
AD-771 739

SAP: A MODEL FOR THE SYNTACTIC ANALYSIS
OF PICTURES

Armond David Inselberg, et al

Washington University

Prepared for:

Advanced Research Projects Agency
Department of Defense
National Institutes of Health

^

June 1968

DISTRIBUTED BY: m
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

llin.iassitieJ
Security Classification

DOCUMENT CONTROL DATA -R&D
///) Z2ZZ1Z

/
(Security claaslllcation ol title, body ol abMlrmcl and indexing annolallon mual be anlered when the ovarall report Is claflllidj

1 ORIGINATING ACTIVITY (Corporate author)

Computer Systems Laboratory
Washington University
St. Louis, Missouri

3 REPORT TITLE

2». REPORT SECURITY CLASSIFICATION

Unclassified
26. GROUP

SAP; A Model for the Syntactic Analysis of Pictures

4 DESCRIPTIVE HOTES (Type ol report and Inclusive datee)

 Interim
* *uTHORiS) (Firm name, middle initial, lael name)

Armond David Inselberg and Raymond M. Kline

6 REPORT DATE

June, 1%8
8a. CONTRACT OR GRANT NO.

(1) DOD(ARPA) Contract SD-302
6. PROjieVyy.l(nRKR) 0mt No- FR-00218

(1) ARPA Project Code No. 5880
c- Order No. 655

10 DISTRIBUTION STATEMENT

Distribution of this document is unlimited

7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

56
9a. ORIGINATOR'S REPORT NUKTBERO)

Technical Report No. 9

sli. OTHER REPORT NO(SI (Any other numhara thai may ba aeel&ied
thlt report)

I SUPPLEMENTARY NOTES

13. ABSTRAC T

12. SPONSORING MILITARY ACTIVITY

ARPA — Information Processing Techniques
Washington, D.C. N.I.II.. Div. of Research

A syntax-directed model is presented which is able to recognize and generate two-dimensional
pictures while allowing a high degree of man/machine interaction. Starting with a field of points
representing a picture, a string of symbols providing a structural description of the picture is
produced by the syntactic component. The structural description, composed of higher level
primitives (e.g., geometric symbols such as triangles and rectangles) and syntactic relations
which exist between the primitives, is operated upon by the semantic component to provide a
semantic interpretation for the picture. The syntactic component consists of a lexicon, a
modified context-sensitive phrase structure grammar, and a set of transformation rules. The
semantic component consists of a set of heuristics to abstract the picture and a modified context-
sensitive phrase structure grammar which allows contextual restrictions to be applied to
combinations of constituents existing at different levels of the syntax tree which syntactically
describes the picture. Various aspects of the model have been programmed on the LING
(a small digital computer), the IBM 360/50, and the IBM 1012.

Reproduced by

NATIONAL TECHNICAL
INFORMATIGN SERVICE

U S Deport l o(C
Sprinofii Id .A 221 'S!

DD fOMI
• MOV •• 1473 OStOLCTB PON ANMV U«C.

Security ClaaairicaUon

Unclassified
Security Classification

KEV WORDS

Syntactic Analysis of Pictures
SAP
Scenic Input
Syntax Directed Model
Syntactic Functions
Syntactic Component
Higher Level Primitives
Triplet Set
Partial Ordering
Parsing of Triplet Set
Syntax Tree
Semantic Component
Semantic Interpretation
Graphic Feedback
Syntactic String
Reverse Polish String

SOLE

Ui'

Security Classification

SAP: A MODEL FOR THE SYNTACTIC

ANALYSIS OF PICTURES

Armond David Inselberg and Raymond M. Kline

TECHNICAL REPORT NO. 9

June, 1968

Computer Systems Laboratory

Washington University

St. Loui s, Mi ssouri

:£ D c
J*N 4 1974

This work hat been lupported by the Advanced Research Project« Agency of the

Department of Defense under contract SD-302 and by the Division of Research Facilities

and Resources of the National Institutes of Health under Grant FR.00218.

•:■;-•■'• ,

■■.!>'■ -

'We are like dwarfs seated on the shoulders of giants;
we see more things than the ancients and things more

distant, but this is due neither to the sharpness of our
own sight, nor to the greatness of our own stature,
but because we are raised and borne aloft on that
giant mass."

Bernard of C'hartres

I
I
i

fC

I
1
I
I
I
I
I
I
I
I

■II-

ABSTRACT

A syntax-directed model is presented which is able to recognize and gen-

erate two-dimensional pictures while allowing a high degree of man machine

interaction. Starting with a field of points representing the picture, a string of

symbols providing a structural description of the picture is produced by the

syntactic component. The structural description, composed of higher level

primitives (e.g., geometric symbols such as triangles and rectangles) and syn-

tactic relations which exist between the primitives, is operated upon by the

semantic component to provide a semantic interpretation for the picture. The

syntactic component consists of a lexicon, u modified context-sensitive phrase

structure grammar, und a set of transformation rules. The semantic component

consists of a set of heuristics to abstract the picture and a modified context-

sensitive phrase structure grammar which allows contextual restrictions to be

applied to combinations of constituents existing at different levels of the syntax

tree which syntactically describes the picture. Various aspects of the model

have been programmed on the LINC (a small digital computer), the IBM 360 '50,

and the IBM 7072.

I
I
I

LIST OF FIGURES

No. Piige
1. Outline of Flow in SAP 3

2. Examples of Scenic Input S
3. The Syntax-Directed Model 7
4. An Example of a Complex Figure Defined by Syntactic Functions 31

5. Syntactic Component 34
6. Examples of Production Rules to Form Higher Level Primitives 3*)

7. Examples of Partial Ordering of a Triplet Set 52

8. Possible Parsings of a Triplet Subset 58

9. General Syntax Tree 62

10. The Semantic Component 65
11. Example of Semantic Interpretation 75

9.1.1(a)The Graphic Feedback of a Church Scene 87
9.1.1(b)The Syntactic String to Generate the Church Scene 87
9.1.2(a)The Graphic Feedback of a Farm Scene 88
9.1.2(b)The Syntactic Siring to Generate the Farm Scene 88
9.1.3(a)The Graphic Feedback of a House Scene 89
9.1.3(b)The Syntactic String to Generate the House Scene 89
9.1.4 A Flow Diagram of the Programs Which Obtains a Reverse Polish String from the

Triplet Set 90
9.1.5 A Flow Diagram of the Program Which Segments and Abstracts a Figure 91

■IV-

TABLE OF CONTENTS

No.

1.

I
I
I

I

5.

10.

Introduction

Basic Concepts and Considerations

2.1 Syntax-Directed Pattern Recognition

2.2 The Phrase Structure Grammar

2.3 Parsing Strategies

2.4 The Nature of Pictorial Data

2.5 Linguistics Data Versus Pictorial Data

2.6 The Syntactic and Semantic Component Grammars

A Survey of the Literature

A Syntax-Oriented Language L*

4.1 The Language

4.2 The Primitives

4.3 The Syntactic Relations

4.4 The Syntactic Functions ...

The Syntactic Component of SAP

5.1 An Outline of the Syntactic Component

5.2 The Segmenting Subcomponent

5.3 The Parsing Subcomponent

5.3.1 Complt.'teness Tests

5.3.2 Partial Ordering of the Triplet Set

5.3.3 The Syntax Tree

5.3.4 The Reverse Polish String

5.4 A Summary of the Syntactic Component

The Semantic Component of SAP

6.1 A Semantic Interpretation

6.2 The Abstraction of Figures

6.3 The First Level Grammar of the Semantic Component

6.4 The Second Level Grammar of the Semantic Component

Final Considerations

7.1 Further Extensions

7.2 Advantages of the Syntax-Directed Model

7.3 Disadvantages of the Syntax-Directed Model

7.4 Comparison Summary

Summary and Conclusion

Appendix 9.1 The Implementation of SAP

9.1.1 A Listing of the Program Which Obtains a Reverse Polish Siring from the

Triplet Set

9.1.2 A Listing of the Program Which Segments and Abstracts a Figure

Appendix 9.2 A Listing of the Rules of the Syntactic and Semantic Components

References

Page

1

6

6

6

8

9

II

13

16

20

20

21

2 3

28

13

13

13

n
n
;i
13
>9

61

62

62

64

71

76

79

79

80

81

83

84

86

92

92

100

123

SAP: A MODEL FOR THE SYNTACTIC ANALYSIS OF PICTURES

I
I
I

1. INTRODUCTION

The syntactic analysis of natural language has become a well-established technique in

the field of linguistics. Whether a similar analysis can successfully be applied to pictures
remains to be seen. This report is an effort to consider some of the problems which arise in the
syntax-directed analysis of pictorial data. While it is seen that the syntactic-semantic approach
may be used in both the analysis of linguistic and picto'ial data, many of the formulations

developed in linguistics should not be expected to carry over to pictures.
A most satisfactory situation would be one in which Me computer has the ability to perform

as well as a human in the field of pattern recognition. Wh.1-: there are industrial problems which

require the machine to make discriminations beyond that which is humanly possible, a pattern
recognizer which could recognize checkbook signatures, postage stamps, or airplane silhouettes

would be no small achievement. Thus, the field of psychology may be an information source

for pattern recognition in terms of such work as has been done by the Gestalt psychologists.
However, a distinction must be maintained between a model which simulates human intelligence

and a model which can provide the same results as human intelligence.
In developing this report, the pictorial data was restricted to straight line figures which

have the semblance of cartoon-like drawings with no field of depth. Thus, the pictures may be
considered to represent three-dimensional objects projected onto a plane with the point of view
of the object being perpendicular to any one of its major axes. In the following chapters there

is no distinction made between the terms graphics and pictures implying that the digitized
points of the pictorial data can be the result of drawing on a cathode-ray tube with a light pen

or scanning a hard copy photograph.
As a formal definition, the picture which is presented to the computer is called a scene.

The scene, in turn, is composed of figures. The figures are built up from constituents called

primitives. The higher level primitives for the examples used in this report are geometric

symbols, such as triangles, circle, etc., and the figures are houses, trees, etc. The primitives
are combined to form the figures by syntactic relations. The syntactic relations used in the

present examples are on top of, etc.
This report presents a model which provides an approach to the syntactic analysis of

pictures. As indicated earlier, the pictures are two-dimensional patterns which have significance

in the real-world. The word unaly/.er is meant to indicate the ability to both recognize and
generate pictures. Syntactic analysis indicates thai a structural description is obtained,
describing the topological features of the picture. It is on the basis of the structural de rip-

tion that the pattern recognition (called semantic interpretation) is accomplished.

The model, SAP (.Syntactic /Inalyzer of Z'ictures), was developed based on an interest
in the general methodology and philosophy of syntax-directed analysis, and as such, provides
an overall view of the problem. The model, as described in this report, is composed of two
major components, a syntactic component and a semantic component. A synUx-directed meta-

language to facilitate man/machine interaction is also described in detail.

•2-

An outline of SAP and the ability of the user to interact is represented in Figure 1.

The set of two-dimensional pictures acceptable to SAP constitutes a language L. The syntactic
component of SAP accepts a picture L. and translates it to a one-dimensional string L*.,

This one-dimensional string L*, m a structural description of the picture L,. The set of all

structural descriptions of L constitutes a language L*. The string L*, is sent to the semantic

component to allow an identification or Label, to be applied to picture L^ This process is
represented by the solid lines in Figure 1. The inverse process is the insertion of a Label,

into SAP, whereby a picture L, is generated. This is represented by the dashed lines in
Figure 1. It is interesting to note that the use of L. or Label, as input does not uniquely
determine the other as output.

The user is able to present SAP with a syntactic string L*,. A syntactic metalanguage

L** allows the user to present SAP with only well-formed strings. A structural description
created by the user can be sent to the semantic component (solid line) to receive a Label, or
sent to the syntactic component (dashed line) to generate a picture.

The second -hapter describes and defines the basic concepts which are taken from the
fields of linguistics and computer science. The nature of graphics is discussed as is the
difference bef een problems of the syntactic analysis of a natural language and problems of
the syntactic analysis of pictures.

The third chapter provides a survey and contrast of the various syntax-directed pattern
recognition systems which have been described in the literature.

The fourth chapter is a formal presentation of a syntax-directed language which has been
designed to enable a user to describe by a one-dimensional string of symbols the two-dimen-

sional type of pictorial data that SAP is able to consider. The strings are composed of symbols
representing the geometric primitives and syntactic relations which comprise the pictorial data.

The fifth chapter describes the syntactic component of SAP. Rules are presented to
combine a set of digitized points into lines and the lines into geometric symbols. A lexicon

is used to obtain the syntactic relations between the geometric symbols. A syntax tree is
formed and from this a linear string is derived to represent the syntactic structure of the picture.

The sixth chapter is a description of the semantic component of SAP. The syntactic
string is abstracted to obtain individual figures and their basic characteristics, or Gestalt
features. A semantic analysis using context sensitive rules attempts to identify the figure on

the basis of its syntactic structure. Unidentified figures are then identified by context sen-
sitive rules in terms of the syntactic structure of the scene.

The seventh chapter provides a discussion of possible further extensions of SAP and
syntax-directed pattern analysis models in general. Also offered is a discussion of the
advantages and disadvantages of such a model.

The eighth chapter contains a summary and conclusions of the work presented in this
report.

In Appendix 9.1 is contained a description of the implementation of SAP on the L1NC1

in LAP62, the IBM 360/50 in LISP IS3-4, and the IBM 7072 in FORTRAN. Appendix 9.2,

contains a listing of the grammars and transformation rules presented throughout the report.
To provide a basis for the discussion of the following chapter, it will be assumed that

graphics (or two-dimensional pictures) is some form of language. The terms graphics and pictures
will be used interchangeably. Whether the two-dimensional picture language should be considered
a natural, artificial, or other type of language is unclear. While no claim is made for a picture

•3-

I
I
I

L,

/Label,

1*.

(Created by User)

Figure 1 • Outline of Mow in SAP

language as being a form of natural language, to understand better the nature of at least two-
dimensional pictures, they will be described in terms of some of the considerations given to
English by a structural or syntax-directed approach to natural languages.

The choice of geometric symbols as the higher level primitives was made partially as a
matter of convenience and also on the basis of the desired graphic input. It was required that

the scenes be rich enough in contextual information to allow our model sufficient opportunity to

be tried but not overwhelmingly complex as to cause an excessive number of side tracking

problems. Thus, it was decided to work with out-door type scenes as found in the country or

city. In addition, it was thought best to begin work in two dimensions. In view of this, a

basic set of geometric symbols were chosen. It was rather surprising the large number of
sophisticated figures which could be drawn from the small set of geometric primitives. A page
of these scenes is found in Figure 2. However, it should be noted that the pattern recognition
Of these particular scenic figures is irrelevant to the goal of indicating a general approach to
the syntactic analysis of pictorial data.

The syntactic string which is processed by the pattern recognizer may be considered a
data structure. This data structure allows not only the syntax of the graphic input to be con-
cisely represented, but also allows the semantics of the scene to be obtainable. The semantics
of the scene are the various meanings or recognitions that can be made in conjunction with the

figures of the scene, though other semantic levels of pictorial expressions could be defined.

A
R. A

1^± 9-

A

£^.

^

CZD

1

KN^ M

I
I
I
I
1

^^-^^

oaaa
aaao
aaaa
ODD
DD

QOD
OIL.

a aa
DDD

A A aa
JQ ^

zÖ\

-Q—g

Figure 2. Kxamplcs of Scenic Inpui

I

2. BASIC CONCEPTS AND CONSIDERATIONS

2.1 SYNTAX-DIRECTED PATTERN RECOGNITION

As indicated in ;he introduction, syntactic analysis is meant to imply both the generation

and the recognition of pictures. However, strictly speaking syntax-directed analysis refers to
the recognition of patterns.

As indicated by linger. tiiere jg ,, distinction between pattern recognition and pattern

detection.

Pattern detection consists of examining an arbitrary set of figures and
selecting those having some specified form. Pattern recognition con-
sists of identifying a given figure which is known to belong to one of
a finite set of classes.

Patterns can be considered as a large number of ordered discrete points. By giving an
identification or label to a pattern essentially a many-to-one mapping is being performed.
Accepting pattern recognition to be a many-to-one mapping, the difficulty in pattern recog-
nition becomes one of determining what operations will perform this mapping. The operation

which performs this mapping must obtain a set of measurements (n-tuples) which characterize

the pattern. Thus, a major problem of any pattern recognition model is the choice of measure-
ments with which it attempts to characterize the patterns which it wishes to name.

The syntax-directed method of pattern recognition essentially analyzes the patterns for

connectivity and topological features. By considering the topology and geometry of the patterns.

sets of n-luples are formed, which are geometrically and lopologically related. The formation
of these sets is accomplished by a grammar. The grammar may be providing a syntactic or

semantic analysis. Hence, a syntax-directed pattern recognition model may be represented as
a set of grammars which serve as input to the computer along with the input pattern, which is
to be identified. The computer then serves as a translator which operates according to the
grammar rules to translate (map) from a picture L. to its Label..

The input of the grammars for the syntactic and semantic analyses constitutes providing
a syntactic component and a semantic component to the computer. Ibis is shown in Figure 3.
In terms of SAP, it is actually the semantic component which performs the recognition or

labeling of the picture. The syntactic component provides a structural description of the
picture which allows this recognition to take place.

2.2 THE PHRASE STRUCTURE GRAMMAR

A graphic or pictorial language L is considered to be a subset of the set A* of all finite

arrays of symbols from an alphabet A. The language 1, is generated by the set of alpha-
betic symbols A and a set of rules for combining these symbols into a hierarchy of consti-
tuents. The alphabet plus the set of rules is called a grammar. Essentially, a grammar

provides a description to account for observed patterns, and thus may be considered an ab-

straction of these common patterns. A theory of graphics would be required to choose an
adequate grammai on the basis of given graphic data. While criterion used in linguistics,

such as Chomsky's* descriptive and explanatory levels of adequacy might be valuable it
certainly would be premature to propose such criterion for a starling point in a theory of graphics.

l'ictures to be Itlt-niiticd

I
I
I
I

Syntactic

Component if it it

Computer

Identification (Label)

of Picture

Semantic
Component

Figure 3. The Syntax-Directed Model

-8-

The type of grammar which is used to perform the- analyses of the graphic or pictorial
data is called a phrase structure grammar (PSO). While the components of SAP use modifi
cations of the standard PSG, a definition of a PSG grammar is as follows;

Essentially a phrase structure grammar, K. is a finite set of productions of the lorm,
<i—»-ü where,

(i) u is a nonnull string of symbols of the vocabulary V.
(ii) 6 is a single symbol of the type called a nonterminal symbol

of the vocabulary V.

dii) There is one 0 called the goal, S, where the goal is never a
member of a 0 string.

Ihe vocabulary V is the union of the set A of alphabetic symbols called terminals
symbols and a set N of syntactic metalanguage symbols used for defining the Ian-
guage L and which are called nonterminal symbols,

A phrase structure grammar defines a language by forming derivatives of the goal, S. If in
applying a production rule 6—*■ xji, the string ß is said tobe a direct derivative of the string

a (a > ß) if there are strings y and 5 such that a--y<hh and ß^yCiB. The strings y and ß may be
null in the case that the production rules are context free, otherwise the rules an considered
context sensitive. The operation a*>/3 is defined as the case where there exist strings (/„.

"1 "i such thato=a0, «0 >>„,,..., a[_l^ul and 04=18. In this case ß is called a derivative of a
and the sequence, a=an=^a• en 1 —\n. a ;. „»H.J 1 .• r o ■ ' " / 1 "1-1-7>"i=P '*< called a derivation ol fs and a.

The derivatives of the goal are called sentential forms. Those sentential forms which

consist only of terminal symbols are called the set of sentences (for pictorial data, the sentences
are called scenes) and it is the set of scenes which comprises the language L. That is,

L - I s S* > s and s f A*|

2.3 PARSING STRATEGIES

The derivations of the scenes of L from the goal S are often represented by tree structures.

The derivations provide a structural description (or parsing) of the scenes. The tree structures,
called syntax trees, explicitly represent the structural descriptions or parsings.

The derivations of the sentences from the goal S by means of the PSG use basically om.

of two algorithms or parsing strategies. These are called top down and bottom up strategic.,.
1. The top-down strategy is completely goal oriented. The main goal S is

chosen first. This goal chooses a set of subgoals. The subgoals hope to

find a derivation of the scenes from S by substituting the right hand side
of the production rules in the place of the subgoals. The substitution

forms a new set of subgoals. Thus, each subgoal in turn chooses a set
of subgoals. If a subgoal fails its task it is rejected and a new subgoal

replaces it. It is hoped that the subgoals will eventually reach the ter-

minal string. The top-down strategy causes infinite looping if the strings
are analyzed from left-to-right and a left recursions rule occurs, that is

gij—»'^{(/(j. The parsers which use a top-down strategy are sometimes
called predictive, since at each step they attempt to predict the subgoals
to be used to reach the terminal string.

•9-

2. The bottom up strategy has only implicitly the long range goal. S. 1 he
strategy is essentially an attempt to substitute substrings which are the
right hand side of production rules by their corresponding left hand side.
In this manner, it is hoped that eventually the single symbol S. will be

reached.
Both parsing strategies are used in SAP, The syntactic component uses a bottom up strategy

to obtain a structural description of the pictorial input. The semantic component uses a right
to-left modified bottom-up parsing to abstract the structural description provided by the syntactic-

component. The semantic component also uses a modified top-down strategy to assign a semantic

interpretation to the figures of the scene and a bottom-up strategy to assign a semantic inter-

pretation to the pictorial scene.

2.4 THE NATURE OF PICTORIAL DATA

One aspect of pictures which should be mentioned is the presence of pictorial universals,
though as Hockett7 points out. we do not want to invent language universals but discover them.

Some of these universals are;
(i) Arbitrary configurations of pictorial data (figures) can be created at will,

(ii) The newly created figures can be considered discretely defined messages,
(iii) The figures may be assigned meaning independent of any physical or

geometric form of the figures and also independent of the spatio-temporal
coordinates of the figure.

(iv) For any non trivial graphic language, there is the possibility of ambiguous

and anomalous pictorial data.

As defined by Chomsky .8 one should note the difference between a competence and a

performance model of the s\ntax of the language. Competence is to be considered the viewer's

knowledge of graphics while performance is the viewer's actual use of this knowledge. It is

the ideal viewer's intrinsic competence which is represented by a grammar. The grammar assigns
to each figure a structural description which indicates how this figure is grammatically under-
stood by the ideal viewer. The acceptability of a figure refers to the performance model and
based on such factors as memory limitation it is not of present interest. The competence
model is concerned with the grammaticalness of a figure.

A pictorial message goes through the same encoding and decoding processes as a linguistic

message, Thus, an individual encodes a graphic message by creating it in such a manner that
the message can be visually perceived. The graphic message is then decoded by either the
original sender or another viewer when an attempt is made to understand the message. The

message can be a single alphabetic symbol called a primitive, a structure composed of several

primitives called a figure, or a structure composed of one or more figures called a scene.

The encoding and decoding of a graphic message is accomplished by syntactic and
semantic components. It is the decoding operation, performed by the syntactic and semantic
components, thai is generally considered syntax-directed pattern recognition. The syntactic

component parses the graphic data. The parsed graphic data is represented by a structural des-
cription (SI)) which indicates the primitives comprising the graphic data and the syntactic re-

lations between the primitives. The semantic component is highly dependent on the syntactic

component and probably should be called the semantic-syntactic component. The semantic com-
ponent accepts the struclura! description as input and provides a semantic interpretation (SI) to

10-

the graphic data. This semantic interpretation indicates whether the data is recognized, ambi

guous, or anomalous.

COMPONENT/^

structural
description

1 *,

semantic

inter pretalion
Label.

A picture L, may actually have more than one structural description. Thus, L*| repre-
sents the set of structural descriptions of L., A member of the set L*,, structural description

j of picture L., is represented as L*||.

Similarly, picture L. may have more than one semantic interpretation, in which case the
picture is considered ambiguous. Thus, Label, represents the set of semantic interpretations

assigned to picture L|, A particular identification or label of L| is represented as Labeli,.

The decoding operation can be represented by the following equations;

SD(L = L*,

where, L*, - {L*i|| and if for L*,),
(i) max j ■ (), then Lj is not well-formed,
(ii) max j - 1. then L. has a single structural description.

(iii) max j ■ I, then L. has multiple structural descriptions (multiple parsings).

SKL*.) = Label,
where. Label.= L {Label,i} and if for Label,.,

(i) mix j = 0, then L. is anomalous,
(ii) ma.i j = 1, then L, is singularly identified,
(iii) max j • 1, then L, is ambiguous,

In the remainder of the report, the subscript j will be left off unless a reference is to be

made to a particular structural description or identification.

The graphic data or picture may also be considered a geometric graph. A geometric graph

in two-dimensions is a set V = | v. | of points and a set E ^ | ei } 0f simple curves satis-

fying the following conditions:
(i) Every continuous, non-self-intersecting curve in E whose end points

coincide contains exactly one point of V.

(ii) Every continuous, non-self-intersecting curve in E which joins two
distinct points contains precisely two points of V, and these agree

with its end points,
(iii) The curves of E have no common points, except for points of V.

Thus,a geometric graph is a geometric configuration or structure, in this case in two-dimensions,
which consists of a set of points interconnected by a set of nonintersecting continuous curves.

An example is shown on the following page. The fact that a figure can be considered a geometric

graph will be used in Chapter Five,

I 11-

I

I
I '•IT

C6 ^4

\8 ^'7 S7 V4 «3 V

2.5 LINGUISTICS DATA VERSUS PICTORIAL DATA

While the application of linguistics to graphics will be earned through the remainder of

the report, it is worthwhile to note some major difficulties in syntax-directed pattern recognition

which, for the most part, do not appear in linguistics.
(1) A figure can be parsed from almost any direction, where theoretically

each parsing readily can provide the same information. While this in

itself is not a problem, since the viewer can always approach the figure

from one standard direction if necessary, this flexibility indicates that

restrictions must be considered because of the astronomically large num-

ber of parsings of only a slightly complex picture. As indicated earlier,

the set of parsings of picture l^ is represented by I,*,, where a parti-

cular parsing j of picture L, is L*!,.

(2) The syntactic relations of a grammar have a hierarchy which limits the

number of possible parsings of a figure into its primitives. However,

for the restricted pictorial data being considered (elimination of depth)

any correct parsing of the figure provides essentially the same structural

description of the figure and hence, ideally, the same semantic inter-

pretation in terms of pattern recognition.

(3) Given a parsing of a figure, in a great m i) cases the semantic iiUer-

pretation procedure is highly context depei dent. 1 such a situation, a

primitive cannot be semantically interpreted independent of the surround-

ing primitives to which it is syntactically related.

(4) The elements of the structural description ami the ease with which the

structural description is produced is dependent on the choice of the

primitives and the syntactic relations between the primitives. However,

an importanl point in which graphics differ from linguistics is nisi how

the parsing is to be performed. In linguistics, the primitives or lexical

items (words) are clearly distinguishable in any terminal siring. Unfor-

tunately, in graphics this is noi always the case. For example, consider

the simple graphic grammar composed of the two primitives, triangle and

rectangle, and the single syntactic relation, an lop of.

The f igure.

/

is composed of a triangle on top of a rectangle with their common boun-

dan removed. But for this figure to be considered well-formed, it must

be parsed into a triangle and a rectangle, both of which are implicitly

contained within the figure. In linguistics the lexical items are con
tamed explicitly.

(■■^ Not only are the primitives often implicit in the pictorial data but it is

also the case that the syntactic relations are always implicit in the

data. Lexical items are concerned with only one dimension and hence

are s\ ntactically related in a string by the singular relation of linear

luxtaposition, or the relation of next to. Two-dimensional pictures are

concerned with juxtaposition in an infinite number of directions. The

significance of the additional dimensions to juxtaposition can be seen
by the example.

A

B

where A can be considered on top of B, but must be snecified also to the

right of or to the left of B to completely determine the scene.

(6) As indicated in paragraph number (4). the fact that the primitives are

contained implicitly in the pictorial data is different from the occurrence

of words in a natural language. However, this difference could be elimin-

ated if the equivalent of words in linguistics are lines in figures. While

this equivalence will be seen to shortly fall apart, the analogy is carried

further. Both words and lines are clearly defined in their respective-

data. Higher level categories such as NP, VP, etc. are contained impli-

citly in the linguistic data just as higher level categories such as triangle,

square, etc.. are contained implicitly in the pictorial data. Unfortunately,

the analogy collapses when the semantic aspect is considered. For while

words have grammatical and semantic significance in themselves, the

line has only grammatical significance in isolation from i's contextura!

13-

I
I
I
I

surrounding. The same difficulty arises if words arc equated to higher

level constituents such as triangles, tor the triangle has no semantic

significance independent of its use in a specific figure.

An alternative is to consider letters of words to be equivalent to

lines of a figure. In this case, both letters and lines arc .learly defined

in their respective data and neither have any meaning in themselves.

It may even he argued that except for figures composed of one dimensional

primitives (bubble tracks, etc.) lines take on no individual meaning even

within their contextual environment. This is certainly the case for

letters, therefore letters and lines appear to be reasonably equivalent.

But the analogy again can go no further, for while letters form words and

lines form geometric symbols it has been seen thai words and geometric

symbols are not equivalent in their respe;:tive languages. However, the

equivalence between constituents of linguistic data and pictorial data

can possib'y be made on the following basis. Pictorial figures can be

equaled to words. The primitives which comprise the figures are equi

valetit to the letters which comprise the words. The lines winch comprise

the primitives are the same as the strokes which comprise the letters.

Finally, the figures combine to form a scene as do the words combine to

form a sentence. This equivalence is summarized in Table I.

(7) A major difference in the components which perform the analyses of the

graphic and linguistic data is seen by the fact that the syntactic and

semantic components of pictorial analyzers are composed of essentially

phrase structure grammars. The transformational movement in linguistics

considers the semantic component to be composed of what I'odor and

Katz'*'0 call projection rules. However, as pictorial analysis develops,

any form of the PSO may very likelv be found inadequate for semantic

interpretation. It should also be pointed out that I'odor and Katz have

not been having overwhelming success with their projection rules.''

The above problems will be discussed in greater detail in the following sections.

However, the fact that the general syntactic-semantic approach is readily applicable to both

linguistics and graphics leads one to believe that, within human conceptualization, pictorial

and linguistic analyses are highly intermeshed. One possible major link between the languages

is the Ciestalt factor, which to a large extent has been overlooked in linguistic analysis. The

Gestalt factor will be considered again in a later section, though it may be argued that in a

discussion on the competence model, the (iestali factor is out of place being an aspect of the

performance model.

2.6 THE SYNTACTIC AND SEMANTIC COMPONENT GRAMMARS

The actual choice of a grammar in terms of the primitives and a set of relations which

are able to provide a syntactic and semantic interpretation to the graphic data is a very difficult

one. Assuming that a number of grammars are available, the choice as to which grammar will

most efficiently and effectively process the data is more difficult that the similar problem in

linguistics. If a hypothetical multilingual machine is presented with linguistic data it would

first search the lexical units of the data to determine with which language it is to be dealing.

■14-

fablt' 1. The Bqnivalcnce of Pictorial and I inguislic Data

I

I

I

1

I'kional Data 1,inguislic Data

Scenes Sentences

Figures Words

Ptimi lives Letters

1 ilics Strokes

Points Points

-15-

I'he decision as to what language immediately limits the choice of grammars from which the
machine can choose to further analyze the data. As indicated earlier, the primitive units in
pictorial input are not so easily discernible.

However, this does indicate an approach to the problem. If a graphic processor (human
or machine) is confronted with da i, it will choose a grammar which seems most applicable.
If this grammar does not allow a satisfactory semantic interpretation to be made, the grammar
if. discarded, a new grammar is chosen and the process is repeated. While it may be argued

that the choice among grammars is never really made since an individual has only one large

ulti-leveled pictorial grammar, the argument proves nothing. Combining several small grammars

into one large grammar still requires the parsing of the figures into particular primitives. Which

primitives this will be requires a somewhat trial-and-error process to take place. The important

factor is the development of a set or orientation. For example, suppose an individual is pro-

cessing some data and finds the parsing to be reasonably easy but the semantic interpretation

to be somewhat confusing. When told that what he has been calling photographs of houses and
trees are really photographs of paramecium, he realizes his set orientation was wrong.

m

lb-

3. A SURVEY OF THE LITERATURE

The following briefly outlines some of the syntax-directed models which have been

described in the literature. An extensive literature survey on syntax-directed models developed

before Wbb has been made available by Jerome Feder.12

The work of R.L. Clnmsdale12 et. al, was one of the first pattern recognition programs to

use a structural description of the figure to be recognized. The recognition is performed

In comparing a statement describing the basic features of the pattern to be recognized

to a set of statements stored in the computer which relates to named patterns. The statements

describing the figure is found by a scanning process which segments tile figure into groups,

and an assembly process which obtains descriptions of the groups determines the relation-

ships between the groups, and which compresses and codes this information to form the state-

ment. Two implemented systems have been produced, one using a key word for the pattern

to provide a more rapid selection of the standard pattern statement.

Al the National Bureau of Standards, Russell Kirsch14 devised one of the earlier programs

which uses an immediate constituent grammar to analyze pictures of black and white triangles,

squares, or circles. A limited model accepts both pictures and sentences describing the pic-

tures as input, fhe sentences and pictures are parsed by phrase structure grammars and then

translated into an intermediate logical language. The logical interpretation of the sentences

are then tested to determine their truth value.

R, Narasimhan18'16,17,18'19 while at the University of Illinois, had considerable success

with the syntax-directed analysis of bubble chamber pictures. A program called BUBBLE

SCAN performs the syntactic analysis. After forming line elements from points by a rectangular-

array representation, the line elements are labeled according to their horizontal, vertical, or

diagonal direction, Hie vertices connecting the line elements are labeled providing a labeled

graph of the picture. The line elements form higher level constituents called tracks and the

tracks form the highest level constituents on the basis of the type of constraining vertices.

1 he entire parsing process uses a bottom-up scheme. A second program, BUBBLE TALK,

allows on-line conversation in connection with the analysis of the bubble chamber picture s.

1, is able to function as a complex information retrieval system in order to locale picture

objects with specified attributes. Narasimhan has also dealt with the problems of noise.

preprocessing, and briefly with the relation of syntactic description of pictures to the (iestalt

phenomena of visual perception, though this last work appears rather inconclusive.

While the work on pattern recognition by Herbert Ireeman20'2 ' ^2'2 3 at New York

Universit) does not explicitly use syntax-directed analysis, it is interesting to note that the

encoding process which he applies to describe an object's contour is the use of a rectangular

grid as docs Narasimhan, ireeman has described manipulations of the codings such as expan-

sion and rotation. For the work on SAP. the direction grid has been formalized as a grammar

tor encoding a set of boundary points into labeled lines.

Some work on the grammatical forma li zation of handwriting has been done by Murray

(.llen24,25 at Mil. 'I hough origin,illy developed for the generation of hand-writing, the research

has developed to the stage of being used for computer recognition programs. Foul basic

strokes, called segments, are defined. These segments are transformed by rotation, reflection,

and translation or combined to form IX strokes whose sequences are sufficient to describe the

English upper and lower case letters, I he rules for collating the strokes may deal with

letters or with strokes between letters.

•17-

Fot his master's thesis at the University of Illinois. Kenneth Breeding26 developed a

grammar to describe simple planar pictures by labeled line segments and selected vertices.

The drawings are composed of straight lines oriented in either a horizontal or vertical direction.

The selected vertices are those which have a degree of three. The manipulations of the strings

describing the pictures is similar to. though surpassed by, the work of Freeman.
Robert S. Ledley27.28,29,30 ,K1S done some interestjng work |n tht. syntax.dir(.cted

analyses of pictures of chromosomes at the National Hiomedical Research Foundation. Alter

obtaining the boundary of an object in a photograph, the object's contour is analyzed by a

grammar which has five basic curves as its terminal symbols. These curves form higher level

constituents by a bottom-up parsing which determine whether or not the object is a chromosome.

Ledley's earlier work in the syntactic processing of pictures was concerned with what he called

concept recognition. One technique of concept recognition was termed deductive reference,

winch was essentially pattern recognition by a bottom-up parsing using a grammar lor pictures

such as cartoon-like houses. The second technique of concept recognition, inductive inference,

uses a General Problem Solver approach by guessing a final goal or recognition solution of

the picture and then applies a set of heuristics to reduce the difference between a syntactic

description of the guessed solution and a syntactic description of the input picture to be recog-

nized. Ledley's use of the OPS approach lor an initial guess performs somewhat the same

process as the abstracting technique SAP uses in the semantic component

William E. Miller. Alan C, Shaw3l,32.33 ;md olher „^^ of ^ Computet Science

Department at Stanford University and the Stanford Linear Accelerator (enter are developing

a system which is called a picture calculus to recognize and generate pictures. The picture

calculus includes a picture description language (1>1)U. rules for manipulating pictures, and
processors for the parsing and recognition of pictures.

The primitives of PDL are essentially directed line segments which have a head and a

tail. The binary operators of PDL descr.be various possible concatenations of the primitives

such as head to tail, tail to tail, etc. The unary operators of PDL, for example, reverse the

tail and head of a primitive. The language has been used so far for the recognition of particle

Physics pictures and other graph-like structures and to permit the drawing and transformation

of line drawings on a CRT. The picture recognition scheme, as used on spark chamber photo-

graphs, applies a top-down parsing analysis to a string of primitives which represent the struc-

ture of the picture. The picture generation scheme also stores the picture description as a

string, which can be parsed to allow changes to be made in the picture description. Further

extensions are to include a continuous transformational operator which could give the effect

of motion, the development of PDL to utilize what might be considered higher level topological

concepts, such as contained within, adjacent, and above, and the consolidation of the recog-
nition and generation schemes to facilitate learning by the system.

A somewhat different syntactic approach has been taken by William Martin3" and Robert
Anderson.35,34 M,irt|M at v|, , ig concerned Wlth t.|king ,, mathematical expression whlch ls

stored as a tree structure and creating a visual display of the expression. Lach symbol is

expressed in a grammar by a special form, each form is then inscribed by a dimensioned rec-

tangle. The dimensioned rectangles combine to create a higher level dimensioned rectangle

which is then centered on the cathode-ray lube and the contained expression displayed. Ander-

son, for his Ph.D. dissertation, has provided a grammar lor the recognition of various mathe-

matical expressions which are displayed in two-dimensions. The model partitions a displayed

configuration into syntact c subcalegories which are inscribed in dimensioned rectangles.

■IS- I
I
I

The rectangles are. in turn, positionally related. However, as Anderson36 points out, he is not

working from a tree structure to a display as Martin, but, from a display to a tree structure.
M.B. Clowes,37'38 at CS1RO in Australia, has developed an interesting grammar for

describing numerals in terms of the contiguous edges which form their boundary. Clowes has
also re.ated this work to similar research in physiology and psychology.

These models all use syntax-directed analysis for at least some aspect of their total
analysis. A comparison of the various models is made difficult, because one uncontrolled
factor which, unfortunately plays a large role in determining the overall models' appearance
is the type of input patterns being considered. As pointed out in the previous chapter, the
nature of the data determines the type of primitives and syntactic relations which comprise
the data.

For example, the fact that Narasimhan considered figures composed of only one-dimension-
al constituents (straight lines) eliminated an interesting semantic problem. When a line was

found in Narasimhan's bubble chamber picture, it was considered a track. Hence, the line is

able to receive at least a partial semantic interpretation immediately. However, in considering

the primitives used by SAP, they generally cannot receive a semantic interpretation independent
of their context.

A further simplification in analyzing figures of bubble chamber tracks is that the syn-
tactic relation between them is singularly concatenation. This allows the syntactic descrip-
tion to be directly represented as a one-dimensional string and processed by a grammar for
semantic interpretation. However, if the primitives are two-dimensional, as in the case of
SAP, a syntactic analysis must first process the figure to obtain some form of explicit repre-

sentation of the topological relations between the primitives. This representation may then

be operated upon the grammar to receive a semantic interpretation. However, it should be
noted that both Narasimhan's and Miller's work has proved very satisfactory for the pattern
recognition of bubble chamber tracks. Similarly, Ledley's pattern recognition of chromosomes
considers only the syntactic relation of concatenation. In all cases the concept of contiguity

is the determining factor. The difference in approaches essentially determines the number of

different values under which contiguity is considered. It is interesting that Clowes does not

consider numerals to be composed of one-dimensional line segments but by using a grammar
which describes a figure by the line segments which form the figure's contour, he uses only
the relationship of next to.

The use of figures whose primitives are one-dimensional lines which require only the
syntactic relation of concatenation does not necessarily eliminate the problem of multiple
parsings of the figure. As is shown in Chapter 5. a two-dimensional figure may have a very

large number of different parsings. This is mainly because the topological relations which
have been chosen are associative when serving as operators in a syntactic description. Ander-
son avoids this problem by not explicitly using any topological relations in the syntactic
description.

While Grimsdale uses topological relations between segments of alphanumeric figures,
the semantic interpretation is accomplished by phrase matching techniques. The use of a
grammar would be a strong addition to his model. Though Grimsdale's results must be taken
cum grano salts (with a grain of salt), as Uhr39 states, Grimsdale's work "is generally accepted

as being one of the most powerful and - intuitively and psychologically - satisfying of pattern
recognition programs."

19.

Breeding's consideration of figures composed of horizontal and vertical lines does no
more than provide a notation for such figures. Its use in pattern recognition does not appeal

promising. Kirsch's work is interesting and apparently has been carried futthet in the direction
of the syntactic analysis of biological images.40

Anderson's approach of syntactically describing a picture in terms of its components and

pattern recognizing the picture by the positioning of coordinates should apply to most of the
two-dimensional pictures which SAP considers. His method would possibly have difficulty with

some of the structures because the relative size of spacing between constituents is not tested.
The fact that his syntactic rules for pattern recognition are not in the form of a phrase structure

grammar is of no importance and that they do allow fine liming of the recognition process is

I highly advantageous, but by not explicitly considering the syntactic relations between the

primitives would cause his model to be cumbersome if used in a man machine system. Nara-

simhan's BUBBLE TRACK allows for a reasonably interactive system. Miller's Picture
| Description Language is an approach to this problem though the lack of topological relations

• is a limiting factor. Miller32 points this out in stating that the picture calculus 'is not very
convenient for describing complex topological concepts without inclusion of concept recog-

^ nizers."

While a phi, •: ? str icture grammar in linguistics can serve as either a generator or recog-
nizer of sentences, in two dimensions a single syntactic relation between two constituents

I does not completely determine their position. To get by this difficulty. SAP requires the
syntactic relations to have arguments which further position the primitives which they relate.

IThis will be described in detail in the next chapter. The one-dimensional figures of Narasimhans

bubble chamber tracks again cause no difficulty in this regard. Miller and Shaw also appear

I

I

to be able to get by such problems by using a powerful and descriptive set '-»f syntactic oper-
ators.

A source of information which so far has been used only sparingly in linguistics and

character recognition is contextual information between figures. This will be discussed in
Chapter 6. Suffice it to say, that contextual analysis is a significant source of information

which has not been considered to any extent by pattern recognition models. Ledley uses
contextual information implicitly in an aspect of his chromosome analysis, while the remaining
syntax-directed models do not seem to use any facet of contextual information. In some models
this may be due to the fact that pictures such as bubble chamber tracks and mathematical
expressions do not contain a high degree of contextual information.

In summary, the work of Narasimhan, Ledley. and Miller is similar to SAP in the use of
a grammar to obtain a syntactic description of the figure. The notion of contiguity plays an
important role in defining the syntactic relations, though SAP provides additional processing

to obtain higher level syntactic relations while for the most part they need only be concerned

with the singular relation of linear juxtaposition. In addition, their use of a grammar to obtain a
semantic interpretation of the figure differs from the manner in which SAP uses a grammar.

This is because of the constraints which exist between the constituents of the figures. The

phrase structure grammar for Narasimhan's bubble chamber tracks and Ledley's chromosomes

are context free as is Narasimhan's" grammar for the pattern recognition of alphabetic char-
acters. In Chapter 6 is a description of how the constraints which can exist between either

constituents of a figure or between figures of a scene may be taken into account by a modified
context sensitive phrase structure grammar.

The next chapter describes a language L* which can serve as a meta language for des-
cribing a two-dimensional language L. such as the figures illustrated in the introduction.

tag^to'-

•20.

4. A SYNTAX ORIENTED LANGUAGE L*

4.1 THE LANGUAGE

The set of pictures which servo as input to SAP are considered to compr.se a two-

~ M1 Tagc '■;As indicated m ,;,ei,rc '•,hc syntactic ^—"(SA'J ——
r ^ 0 .L a t-d"~' P-ture .,) to a se, of one-dimensional s.r.ngs of sv.bols

.l.e''sei LPof "uv 'r1" ' ^ ^"' ^ ^ ^ *" ***** ^^ ^ '^ ^ "^'""- of e set L o two-durens.onal p.ctures defines a language L*. Hence, the syntactic component

oi SA performs a translation of a two-dimensional language to a one-dimensional language

In .ranstorm.ng a two-dimensional language to a une-dimensional language certain oPer-

— -- ^ P'ace. This is because, tor a one-dimensional pattern to compLteltter
a two-d.mens.onal pattern, the topological features which are implicit in the two-d

mine

m ens tonal
[TIT, V er ,,, ,hC One'dime"8ional '— Thus the one-dimensional strin
L , whtch results from the translation of the picture L, describes the topological or syntactic

features of I Because the string, of symbols 1.* descnbe the syntax of the p.ctures of I I *
may be considered a metalanguage. The set of strinas I * iG ,...n.. ..
descr.pfion (SI1> f H , ei oi s Wings L, i s c a 11 ed the pars.n g s or s true tura 1
descr pt.on (SO. ol the p.cture i ,. lh,.s. SDCL.) I,*, The set of str.ngs L*, is sent to the
semant.c component of SAP to receive a semantic interpretation.

I hi llus chapter presents the syntax of the language !,*. The specification of the syntax
0 L .s descnbed in a language ..-. The production rules which describe an algorithm for
recognizing a member of 1* are the statements of I **. Thus L** is a svn,., ■,■ . ,
rRlfltit,!. »n ! ♦ i . 'nus. i, is a syntactic metalanguage
relative to L*, and a meta-metalanguage relative to L.

As indicated in the previous two paragraphs, the set of str.ngs 1.* represent.,,. ,1,^
structural description of a picture I m.v h,- ^h, . t f .. ' representln« ^e

,, . , ' ' ma> be llbli""^ ftom the syntactic component of SAP 1 we er ln alte tlve ls |or a U8er |o provide SAp w.th a ^^^ L ^^ J^

en to the semantic component of SAP the structural description of i p.cture without hav.ng
■he actual p.cture. In terms of p.cture recognition, this provides a means of testing the semantic

component independent of the syntactic component. ,n terms of picture generation, a user can

send to the syntactic component of SAP the structural description. This allows the picture

to be generated without having the actual label of the p.cture. Thus, the syntactic component
can be tested and operated independent of the semantic component. Of course, the user can

send is str.ng to both components, generating a p.cture from the descriptive str.ng and obtain-
mg ö label or identification for the generated picture.

There is a little doubt that the facility of man machine interaction is an important factor
in the development and ultimate use of a model such as SAP. For this reason, the syntax of
L which recognizes the well-formed str.ngs which the user might send to SAP is presented

■ n th.s chapter in its entirety. The process by which the syntactic component of SAP trans-
lates a picture L, into a string or parsing L*, will be described in the next chapter

Formally, the language L* is defined by a phrase structure grammar K2* which is repre-
sented using the Backus-Naur Form (BNF). The language I.* is a subset of the set of all

finite strings of symbols from the alphab V K2* is a 6-tuple. (P.S.F.N.R.SS). The alphabet
A is the union of the sets of terminal symbols P. S, and F.

The vocabulary of the language I,** is a union of the sets P.S.F. and N. The set P is i

se, of terminal symbols which represent the primitive geometric symbols of the language L.

■21-

The set S is a set of terminal symbols which are tlu> names of the syntactic relations which can

occur between the primitive symbols. The set I is a set of functions which are the terminal

symbols which use the primitives and syntactic relations as arguments. The set N is a set of

nonterminal or category symbols of L**. The set R is a set of production rules which deter-

mine how the syntactic strings of L* are to be formed. SS is the goal of the language, a syntac-
tic string.

4.2 THE PRIMITIVES

It was slated earlier that there is a great deal of freedom in choosing the set of primitives

ot the language. However, it is obvious that some primitives will represent certain pictorial

data better than others. Fot the present work, the following set of geometric primitives have
been chosen:

3. Reclangie

(()

(!•)•

(R)

4. Isosceles triangle (II);

5, Rigln triangle (IK):

6. Right triangle down

7. Left triangle (11);

S. Left triangle dowi (TLD);

Thus. P - It. E, R. 11. TR. TRD, I'L. TLD I. The difference between a right triangle and a

left triangle is the location of the right angle of the triangle.

The entire set of primitives listed above are completely determined by specifying their

height, width, and a reference point on the primitive. The circle and ellipse have their center

as their reference point while the remainder of the primitives have their lower left hand vertex

as their reference point. The reference point is indicated by a large dot on the primitives

shown on the previous page. In addition, each primitive of a given type in a syntactic string

must be numbered to distinguish it from the other primitives of the same type in the syntactic

string.

The general form of a primitive is defined by the syntax on this page. For example,

rectangle number 3 with a width of 4 and a height of 10 would be written as,

R(3.4.1ü)

A circle should have the same horizontal and vertical dimension. However, it is the horizontal

dimension that is used to determine the diameter of the circle.

name cti
■ name el lip ■

<name rect

■'name isos ■

'name rt tri >

■ name rt tridown >

name 1ft tri •

name 1ft tridown >

<zero >

■'number >

■ integer >

<numtype ■
'numtype ■

horizontal dimension ^

-vertical dimension >

''primitive argument ■

''circle >

■ellipse '

''rectangle >

'isosceles triangle >

right triangle

' right triangle down >

''left triangle

'left triangle down >

t

b,

R

Tl

TR

TRD

TL

TLD

0

1 i2;3:4!51 6 17 |8|9

'number- ' 'zero> |-number - integer

' integer>

'integer ■
integer ■

-integer-

' numtype /horizontal dimension -,

<vertical dimension-

■name cir ■('primitive argument')

- name ellip > (<primitive argument)

-name rect> ('"primitive argument)

-'name isos •(-primitive argument)

• name rt tri (- primitive argument)

■ name rt tridown (primitive argument)

• name Ifl tri ■ (■ primitive argument ■)

■ name Ifl tridown (■ primitive afgument)

-23-

A tigiifL1 represented by ;i syntactic siring need have only one primitive in the string

referenced in order to position all primitives and thus the figure in the field of view. A refer-

enced primitive has a somewhat different form than that indicated above, the x and y coordinates

of the reference point being arguments of the primitive. The referenced primitive may be defined,

as,

xcoord integer

ycoord integer■
refpi xcoord ■, ycoord

reference primitive argumeni /cm , hori/.ontal dimension ■,

vertical dimension .■ refpt'

And thus added to the definition of rectangle , etc., is.

name cir (reference primitive argument)

name ellip ■(■reference primitive argumeni)

• name rect (reference primitive argument)

name isos ■(reference primitive argument)

name rl tri (reference primitive argumeni)

name rl tridown (reference primitive argument)

name lit Iri •(reference priti'itive argument)

name 1ft tridown (reference primitive argumeni)

rectangle i isosceles triangle ■ I

right triangle right triangle down [

left triangle • l left triangle down

(irele •' ellipse

For example, a reference circle of diameer 15, and reference at (11,47) would be written as.

C(0,15,15,ll,47)

circle

ellipse

rectangle

isosceles triangle

right triangle

right triangle down

left triangle

■ left triangle down

primitive

4.3 THE SYNTACTIC RELATIONS

As in the case of the primitives, the choice of the syntactic relations are also somewhat

arbitrary. However, also as in the case of the primitives, an optimal or perhaps even feasible

analysis of the pictorial input necessitates considerable thought to be given as to the choice

of grammar to be used. The choice of the grammar for a graphic language depends to a large

extent on the syntactic relations desired. While it is possible that at a later date some formal

criterion lor choosing a graphic grammar can be presented, the best that can be said for the

present is that intuitively, it appears that the higher level primitives should be chosen before

the syntactic relations if the two choices can be made separately.

For use in the present research a number of syntactic relations were tried which would

be meaningful in terms of the defined set of geometric primitives. The final choice of relations

has been extremely successful while providing a rather simple syntax. The relations turned

out to be similar to those suggested by Ledley29 in his brief study of the syntactic renre-

sentation of picture expressions. The syntactic relations are of the form *Ri(...), where the

arguments contained within the parentheses will be discussed shortly and i-M 6. The present

set of binary relations consists of;

(i) X,Y, *R1 (...) X is on top of Y.

(ii) \,Y. *R2 (...) X is under Y.

(iii) X,Y, *R3 (...) X is to the nghl of Y.

dv) X.Y. *R4 (...) X is to the left of V.

(v) X.v. *R5 (...) X is contained within V.

(vi) X,Y. *R(i (...) X contains Y.

or where the primitives, X and Y. can be considered operands and the relation *Ri is an oper-

ator, Thus, S |*R1.*R2,*R3.*R4,*R5,*R6!.

The arguments of the relations *R1, *R2, *R3, and *R4 contain the following information.

(1) The magnitude or distance of the syntactic relation (\1SR). (e.g..

MSR 0 means the primitives are touching....).

NOTE: MSR is optional if 0.

(2) The *Ri of the syntactic relation defines the position between

primitive \ and primitive V is only one dimension (horizontal

or vertical). To define the relative position between X and Y in

the other dimensions (called the secondary position) the edges

of the primitives are used (e.g.. TOP top, BOT bottom, LE=left

side. Rh right side, IK' horizontal center line. Vf vertical

center line)'

NOTE: Optional if HC or VC.

The edges of some of the geometric primitives in use are defined

as;

rop

BO

Thus, the edge of a triangle may be a single point, the vertex of

a triangle.

(3) The magnitude or distance of the secondary position (MSP) between

the edges of the primitives and defined by the arguments of the

syntactic relation must be determined.

NOTE; MSP is optional if 0.

(4) The secondary position between X and V defined in the arguments

of the syntactic relation must also be given a direction, (e.g.,

HP up, 1)N down, LI left, RT right)'

NOTH: optional if (a) MSP 0. or, (b) if any of the following

combinations of edges of the primitives and the direction of the

relative position are used. (LH.RT); (RK.LT): (BOT,UP), (TOP.

DN).

The syntactic relations *R1. *R2. *R.V and *R4 are defined on

the following page.

Examples in using the syntactic relations are:

X,Y,*R1(2,RE3LT) ; \ is 2 units above Y with the right edge of X 3 units to the left of the

right edge of Y.

X,Y,*R1(2,RE3) = same as above with options used.

X.Y.*R3(O.BOT11JP) X is to the immediate right of Y with the bottom edge X 1 un up from

the bottom edge of Y.

X,Y,*R3(BOTl) = same as above with options used.

■name sr >:; - *R

<msr >:; - <.integer^

<vedg >::= TOP BOT HC

hedg •:; - LE | RE VC

--.msp ;: = vinteger ■

<vdir >:: UP DN

hdir ■:;= LT RT

■ vrelpos >;;= ■ veug ■ msp ■ vdir

■ hre 1 po s ■ h e dg ■ ■ m s p ■ hd i r

• argvsr >:: = <msr •,<hrelpos ■
arghsr ■;. -msr ■. vrelpos-

vertical relation 1 >:: = - name sr I (argvsr -)

vertical relation 2 ■;: -name sr 2 (argvsr)

■ horizontal relation 3 name sr 3 (arghsr)

horizontal relation 4 •;: name sr 4(arghsr ■)

■ vertical relation vertical relation 1

vertical relation 2

horizontal relation horizontal relation I

horizontal relation 2 ■
•directional relation •;; = <veftlcal relation j

horizontal relation •

The arguments of syntactical relations *RS und *R6 differ from the other relations in that

an additional argument or constraint is needed to completely specify the contained within

relationship *R5 and *R6 are defined as follows.

argcwsr zero ,■ vrelpos . hrelpos |

zero , hrelpos . vrelpos

• contained within relation 5 ;; name sr 5 (argcwsr)

contained within relation 6 name sr 6(argcwsr)

contained within relation contained within relation 5

contained within relation 6

An example of the use of the *R5 relation is X ,Y.*R5(0,LE I RT,TOP2DN) which says primitive

X is contained within primitive Y and the left edge of X is 1 unit to Ihe right of the left edge

of Y and the top of X is 2 units down from the top of Y.

■26-

Thus,
'syntactic relation ■ vertical relation-

■ horizontal relation^ |
<conlained within relation •

The contained within relation is actually a combination of a horizontal relation and

vertical relation. Two arguments are required for the contained within relation since *R5 and

*R6 convey no information while in the case of *R i for i«!,..,^ the i specifie s a particular
dimension. Thus, for the first lour relations, only one directional argument is required. Though
it can be replaced by a combination of a horizontal and a vertical relation, the contained within

relation is available to provide easier expressability by the user but more so it is needed to
maintain the normalized form of the syntactic string. This normalized form requires two con-
stituents to be related by a single binary relation. To use a horizontal relation and a vertical
relation in the place of a single contained within relation would not conform to the normalized

form. That is. the normalized form would be destroyed if two primitives, where one primitive is
contained within the other, would be related by two binary relations (a horizontal relation and a

vertical relation) rather than by a single binary relation (a contained within relation).
The following list represents the properties of the syntactic relations defined in this

chapter;
(1) The entire set of relations i , irreflexive. That is, a binary relation

*Ri is irreflexive if there is no X such that (X,X,*Ri) .
(2) The entire set of relations is unsymmetric. That is, a binary

relation *Ri is unsymmetric if, for any pair of elements X and Y
for which (X.Y,*Ri) it is necessarily the case that—(Y,X,*Ri).
where— is read as not.

(3) The entire set of relations is transitive. That is, a binary relation
*Ri is transitive if, for any X,Y. and Z, given (X,Y.*Ri) and
(Y,Z,*Ri) implies (X.Z,*Ri).

Because the relations are irreflexive, unsymmetric, and transitive they are called proper

inequality relations.
If the *Ri previously defined is considered as a binary operation rather than a binary

relation the following properties hold.
(1) The entire set of operations is noncommutative. That is, for any

X and Y, (X,Y,*Ri) * (Y,X,*Ri).
(2) The entire set of operations is associative. That is, for any X,

Y, and Z, (X,Y,*Ri,Z,*Ri) = (X,Y,Z,*Ri,*Ri).
(3) The entire set of operations is closed. That is, for every choice

of elements X and Y in the set, (X,Y,*Ri) is also the set.
The general form of the syntactic relations is »RUn^nj.nj). The arguments of the relation have
been defined by the syntax as:

(1) nj is an integer providing the magnitude of the relation.
(2) nj is string of letters and an integer to indicate the secondary

positioning.
(3) n3 is also a string of letters and an integer to indicate secondary

positioning for a contained within relation. The argument is null
and hence absent for the horizontal and vertical relations.

The syntactic strings formed by the primitives and syntactic relations have a normalized
form of a Reverse Polish ordering. This notation, invented by the Polish philosopher Lukasiewicz

I
I

-27-

in 1921. has been used extensively in compiling computer languages because it makes the

operators and operands in a syntactic string available at the precise moment they are required

in the compilation. Early Reverse Polish requires that the operator immediately follow its

operands, eliminating the need for constituent grouping by parentheses. Thus, a segment ol

the syntactic string can be defined as.

<S88>;:= vprimitive^-primitive^ <syntactic relation-

v,sssN -^primitive > vsyntactic relation-

vprimitive"-vsss - vsyntactic relation^

^-sss^ vsssN ^syntactic relation-

where <888> forms higher level constituents of the language. For example, considering the

syntactic relations and primitives without their arguments, a house could be syntactically

represented as:

IIOISI-

R:

m.R2.R3, *R3.R1.*R5, *R1

where the constituent groupings are actually, (T11,((R2.R3,*R3).R1 .*R5).*R1). It should

be noted that while there is more than one possibility correct parsing for a single graphic input,

at this time no one parsing appears to provide any more or less information than an> other

parsing. This is an advantage over natural language analysis, since it does not appear nec-

essary to obtain all possible parsings of the source language statement (graphic in this case)

to obtain the full semantic content of the statement.

Using a linear scale of 1 unit approximately equal to '„". some further examples of the

use of syntactic strings to represent graphic input are;

TREE

III

ritl.(i.l2.).K(l.2.5.).*Rl(().VCÜl.T)

oi with the use of options.

II(I,6.!2).R(1.2.5).*R1 since the

vertical center lines of the two

primitives are aligned.

•28-

i \(loin

ii iK \\.:K ii v R4

R:

TL(l,3,3),TL(2,3.3),*B4(l,BOTOUP),TL(3)3,3),*R4(l,BOTOUP),R(3,2,6),R(4,2)6),
*R4(2,BOTOUP),R(2,8.4),*R1(0,LE1RT),*R4(1,BOTOUP),R(1122,7)1*R1(0!LE2RT)

or i/ith the use of options.
Tl,(l,3,3),TL(2,3,3),*R4{l,BOT),TL(3,3,3)i*R4(l,BOT).R(3,2,6),R(4,2,6),*R4(2,BOT),

R(2.8,4),*R1(LE1),*R4(1,B0T).R(1.22,7),*R1(LE2)
In the next chapter a procedure is presented for testing the well-formedness of a syntactic

string in Reverse Polish form.

4.4 THE SYNTACTIC FUNCTIONS

Some other relations of the graphic language might best be considered as unary and

binary functions which operate on segments of the syntactic string. Some of these are;

HORIZONTAL OR VERTICAL SYMMETRY:
This is unary function which operates on a segment of a syntactic string to generate its

corresponding symmetrical syntactic string. The horizontal symmetry can be either right or

left and the vertical symmetry can be up or down. The symmetry functions may be defined as.

<hsym •;:= *HSYM

<vsym>;;= *VSYM

■symf ■:;= - hsym ■ - hdir ■ -vsym-vdir

For example, the building drawn below can be represented by the following syntactic

string:

K4

R5
R(l,2.2),R(2,4,6).*R5(TOPl),

R(3,8,4),*R4(BOT).R(4,2,2).

R(5.4,6).*R5(TOPl),*R4(BOT)

• 2«-

using the horizontal symmetry function, the syntactic string becomes,

R(1.2.2),R(2,4,6),*R5(TOPl),R(3,4.4),*R4(BÜT),*HSYMR.
To produce the remainder of the syntactic string internally, the horizontal symmetry

function performs the following transformations on the syntactic relations upon which it operates:

*R1 transforms to *R1

*R2

*R4

*R3

*R5
*R6

TOP transforms to TOP
*R2
*R3

*R4
*R5
*R6

BOT

LE
RH

HC

VC

->
->

BOT
RK

LE
11C

VC

The vertical symmetry function, when operating upon a syntactic string, performs the following
tran sformations:

*R 1 transforms to *R2 TOP transforms to BOT
*R2

*R3

*R4

*R5

*R6

*R1
*R3
♦R4
*R5

*R6

BOT
LE
RH

lie
VC

TOP
LE
RE
IK
VC

REPEAT SEGMENT;

This is a unary function which operates on a segment of a syntactic string to generate

a replication of the segment. The first numeric value (MBR) indicates the magnitude of the
distance between the replications where 0 is optional and indicates touching. As defined

earlier (HD1R) and (VDIR) are the direction in which the replications are to be taken, used in

this case along the horizontal or vertical line. The second numeric value (NUR) indicates
the number of replications to be made.

The repeat function may be defined as.
rp ;:= *RP

''mbr '.: ■'integer
nur •::= integer

• rpf •:: • rp-- <mbr><hdit> ^nur- j- rp • mbr vdir nur

Fo r example.

Rl
R:

RdC ,*RP1RT2<*RPU)N2.R(2,14,I4),*R5

-30-

ENLAROE OR REDUCE SEGMENT:
This is a unary function which operates on a segment of a syntactic string to regenerate

the syntactic string with its various measurements changed by a factor indicated.

This function may be defined as.

•els :■; ; *ELS

•;rds >: ;= *RDS

elrdf •; > <els> <num ■ <rds> • num

For example.

R(1.1,1),R(2,3,3),*R5,*ELS2

(£] become s

R(1,:.2).R(2.6.6),*R5

DEFINE SEGMENT
This is a binary function which allows a dummy variable, DEFi (U0....) to be used in

place of a segment of the syntactic string. The segment of the syntactic string which DEFi

represents is defined as that portion of the string which follows DEFi until the first *DEFS is

found. The integer i names the particular segment of the syntactic string which is being

represented.

The define function may be defined as.

defs ♦DEFS

defi *DEF -integer ■
Jefsf ■ ;«= defi ><.., ■ -'defs

ROTATE ABOUT REFERENCE POINT:

This is a unary function which is used to rotate primitives clockwise from the vertical

around their reference point. The numeric value of the function indicates the number of degrees

to rotate. The rotate function may be defined as.

'rote

crotef
For example,

R(l,4,8),*ROTE45

*ROI E

< rote" -integer ■

^ZL

■31-

R7

R3

Rl

R2

R4

R6 R5

I
I
I

R(1.4.4),R(2.4,4),*R4.R(3,4,4),R(4,4,4),*R4.*Rl.R(7.8.8),*R3(BOT)
R(6,8.6),R(5,8,8).*R4(BOT).*Rl(LH)
or

DEF1,R(I,4,4),*RPRT1.*RPDN1,*DEFS.DEF1.*ELS2,*R5(T0P,RE)

Figure 4. An Example of a Complex Figure Defined by Syntactic Functions

•32-

A final example of the syntactic functions in Figure 4 indicates some of the arbitrarily

complex figures which can be created. While many more functions can be readily created, for

those functions presented in this chapter, the syntactic function can be defined as.

■unary syntactic function •::; <8yrnf^ | <ipf>

binarv syntactic function >;;= <defsf>

lrdf> rotef

Thus, to the definition of the segment of the syntactic string must be added.

vsss ■■amarv syntactic function- DHJ^i <sss DEIS

The goal of the language is syntactic strings. Any segment of a syntactic string is also a

syntactic string. Those segments of the syntactic string which are able to receive a semantic

interpretation are considered meaningful. Other syntactic strings are anomalous. But in any

case, the syntactic string, as long as it is well-formed Reverse Polish string, can be displayed

graphically. Thus.

<8 s> :: ~ < s s s •

The syntactic relations defined by the previous syntax arc actually redundant. That is,

only *R1! *R3 and *R5 are really needed to have the same descriptive capabilities as all six

relations. Thus. SAP normalizes the syntactic string, by converting, for example, the *R2

to *R1 with the necessary manipulations of the syntactic string. Similarly, the functions are

removed from the siring before the string is processed, the functions being replaced by the

corresponding segment of the syntactic string.

The normalized syntactic string will also be the result of the syntactic component of

SAP for a given picture. The syntactic string is a structural description of the picture and once

obtained, is operated upon by the semantic component to apply a semantic interpretation to it.

If a semantic interpretation can be applied to the structural description then SAP has recognized

the pictorial input.

The syntactic string is produced in SAP by its syntactic component. This component

and the analyses it uses are described in the next chapter.

■33-

5. THE SYNTACTIC COMPONENT OF SAP

5.1 AN OUTLINE OF THE SYNTACTIC COMPONENT

The syntactic component operates on a two-dimensional picture !., to provide a set of

structural descriptions 1.*,. The structural descriptions are the same one dimensional strings

of symbols described in the previous chapter. Thus, the syntactic component obtains a set of

syntactic strings, each represent'ag the topological structure of a picture instead of a user

presenting SAP with a syntactic string representing the picture's structure. In other words,

the syntactic component of SAP is a translator translating sentences (pictures) of a two-

dimensional language L to a one-dimensional language L*.

(liven a picture L,, a structural description L*,, of L(is a representation of the primitives

and the syntactic relations between the primitive.' which comprise 1... This description will

be obtained by the syntactic component first as an intermediate tree structure and then as a

linear string. The tree structure is actually a pedogogical device to aid in illustrating and

conceptional understanding of the syntactic analysis.

To obtain the structural description the syntactic component is composed of a lexicon

and two subcomponents, a segmenting subcomponent and a parsing subcomponent. The seg-

menting subcomponent forms lines from points, higher level primitives such as rectangles and

triangles from the lines, and a set of 3-tuples called 'he triplet set from the higher level

primitives (to be called uist primitives hereafter) and the syntactic relations between them.

The parsing subcomponent tests the set of 3-tuples ior completeness, partially orders the

triplet set. and then tranv.orms the triplet set first into a tree structure and then into a Reverse

Polish string to obtain the final form of the structural description of the pictorial data. The

lexicon defines the attnbutes of the primitives and the syntactic relations which can exist

between the primitives. A Mow diagram of the syntactic component is shown in Figure 5.

5.2 Tf.E SEGMENTING SUBCOMPONENT

The segmenting subcomponent must first determine and define the lines which compose

the pictorial data. The lines are then used to form higher level constituents. To obtain the

linei and higher level constituents a grammar Kl* is used. Kl* is a modified context sensitive

phrase structure grammar which is defined as the 4-tuple (T1 ,N1 ,R1 ,SS), The setTl is the

set of terminal symbols of Kl*. By the nature of the data, the terminal symbols are discrete

points which do not explicitly occur in the grammar. The set Nl is the set of nontermin-

al symbols. The set Rl is the set of production rules which form higher level constituents

from the terminal symbols. The goal of the grammar is SS. the syntactic string.

In addition to the grammar Kl*. the segmenting subcomponent uses transformation rules

on the line segments formed by Kl*. The transformation rules will form additional line segments

or concatenate line segments already formed to allow the parsing of the figure to be obtained.

In order to obtain the line segments from the discrete points it is necessary to first

label the points. The points are labeled by the directional axes as shown on Page 35.

•34 ■

Graphi>

>

I
Leximn

r
Points

lorni

lines

1.1lies torm

highct

level primitives

Triplet
set

formed

I

r
Completene ss

tests on

t r.pIc i set

Partial

Ordering ol
triplet set

Forming
tree

structure

I
Fotming
reverse

Polish String

Segmenting Sub component

1

Parsing Subcomponent

To
■+*! Semantic

Component

Figure 5. SYNTACTIC COMPONFNT

I
I
f
I
I
i
I
I
I

•35-

To label the points the axes are moved from point to point, where at each point all neighboring

points are labeled according to the axes. Itns. the labeled points indicate their position

relative to their neighboring points. Any number of directional axes may be used, differenti-

ating between horizontal, vertical, and various diagonal type lines. Note that a single point

may receive multiple labels.

Once the points have been labeled, the line segments are formed from the following

productions.

<LH(x,x) PH(X)

l.H(y,x) <PH{y) 1.„(;-..x) l.H(y.z) PH(x)

Lv(x.x) Pv(x)>

Lv(y,x)- l\(y) • l-vl^.x) l.v(y.7) l\(x)

l.DR(x.x) : PDR(X)

l.0R(v.x) •'opfv) l.DR(/.x) I.DR(>'z) ''D R(X)

LDL(x.x) I'DL^'

l.DL(y.x) : -pDL»y> l,DL(Z.x) l.DL(y,/) PDL(x)

F;or example, a point x labeled horizontal, I'^x), forms a horizontal line l.H(x.x) whose end-

points are x, i.e., a line composed of one point is formed. To extend this line additional

points with the same directional label as the line are concatenated to the already existing line.

Concatenating a horizontal point y, Pu(y), to tb-^ left side of a horizontal line bounded by points

z and x, LH(z.,x). forms a horizontal line bounded by points y and x, 1, (y.x).

When a new line (called an actual lint') is started because of a change in direction in

the points, the last point of the line just generated is called a vertex point. Thus, the vertices

are end points of lines and indicate juxtaposition points between lines. Vertex points always

have multiple labels.

Once the lines of the figure have been determined, the input figure can he defined as a

graph composed of a set V |v,| of points in B* and a set of straight lines satisfying the

following conditions:

•u-

1. Everj line contains precisely two points of V. and these agree with its end points.

2. The lines have no common points, except for points of V.

1 he vertices V, and vk which are the end points of a line 1 are said to he incident with the

line. This ma> be written as I {/) (v, & vk) winch is read as / joins v, and \ k, where the symbol

(v. Si vk) denotes an unordered pair of elements of v.

Ihe vertices are placed in a data base where the coordinates of each are stored as attri-

butes of the vertex. This information will be used to determine the length of the line. Another

attribute of the vertex v which is continually updated in the data base is its degree (^(v).

which is the number of lines incident with v, a separate count being kept for acfua/lines.

Each line is assigned two arguments, the vertices which bound the line. The arguments are
defined as follows:

d) Foi l,H (VJ.VI) the first argument is the left hand vertex which bounds
the horizontal line.

(ii) For Lv (VJ.VI) the first argument is the lower vertex which bounds the
vertical line.

(in) For L.DR (vpV,) or LDL (V|,V|) the first argument is the left hand vertex

which bounds the diagonal line.

Since the semantic component requires the structural description to be composed of higher

level primitives than lines, additional rules must be added to the grammar. This would not

necessarily be the case if the pictorial data were one-dimensional figures. For the pictorial

data being considered, the higher level primitives are the triangles and rectangles described in

the previous chapter. The input figure will be parsed into the higher level primitives by combining

the lines determined by Kl*. For example, the figure

can be readily parsed into three rectangles and a triangle.

However, a difficulty in parsing the pictorial data arises when the higher level primitives

required by the semantic component are only implicitly contained in the data. This occurs if.

for example, the primitives are two-dimensional and the common boundary between two primitives

is removed. In this case the segmenting subcomponent must add lines to the figure to make the

primitives explicit. Because there may be a choice as to which lines to add to the figure, more

than one configuration of the figure may be possible.

For example, assuming that the structural description

is to have rectangles as its primitives, consider the

figure on the right:

-37-

There are lour different configurations for the figure. They arc

• • • •

where the dotted lines are the added lines. To produce these configurations the following
transformation rules are used. These rules are not considered part of the grammar Kl* because
of the nature of their operation. The brackets on the right hand side indicate a choice in the
lines to be added and the numbers on the right hand side of the transformalion rule indicates

that the corresponding elements on the left hand side of the rule are carried over.

LH(vvv KLylv-.v,,)
' \

(1),(2) . L'H^.VJ

(IKO.LVv^v,) I

LH(vi.vi).l.v(vi,vk)

(1) , (2) . L'M(V«,V,) ('" ■ UJ . I- H,Vm-V |

((1) .12) . I- v(vm.v|))

I
I
i

The added lines (called artificial lines) are designated by a prime so that the parsing sub-

component will be able to indicate in the structural description that the lines were added by the

segmenting subcomponent.
Note that when artificial lines are added new vertices may be created. The Appendix

10.2 contains the entire set of rules necessary to add artificial lines to the pictorial data being

considered. Each use of an operation rule adds one artificial line to the figure. All four

configurations of the sample figure would be operated on by the parsing subcomponent, producing

structural descriptions (parsings) to be sent to the semantic component. It is possible that

all of the parsings will receive the same semantic interpretation or that some of the parsings

cause the figure to be considered anomalous, due to limitations in the semantic component,

and hence assigned no semantic interpretation.

Once the adding of artificial lines to the pictorial data is complete, it is necessary to

explicitly define the higher level primitives which comprise the data. This is done by combining

the lines into the higher level constituents such as triangles and rectangles by the following

steps.
Artificial lines which were added by the segmenting subcomponent are

concatenated with actual lines of the figure. Two lines are considered

for concatenation if an artificial line has the same direction as an actual

line and they have a common end point.
The artificial and actual lines are concatenated if their common vertex

v has a degree, ^(V)-T3,

(3) If 5(v) = 4, the artificial and actual lines cannot be concatenated.

If two lines are concatenated, the two lines before the concatenation are not lost since they

mav also be needed in the formation of higher level constituents. The concatenated line is

(I)

(2)

•38-

primed. This nun be written as shown below where, tor the first rule, the new line formed

is L^tv,.^).

L,(vl.v|).L1(v|,vl<),Lm(v).vn)"

L,(vl,v|),L1(v|.vk).Lm(vn.v|)-

-►l. l(V, .),(3) i,vi-vk'

♦ LVvi.Vk).^)

Once all possible line concatenations are made, a grammar will form the higher level primitives

required by the semantic component. The grammar rules which form these constituents are

of the form.

-.X(w.h.V) •:;- '•L<')m(V1,Vi)-vL(')n(vk,V|)-... 'H

The rule states that constituent of type X may be formed from the juxtaposed lines in the

context of restriction 0. The arguments of constituent \ are defined as:

(i) w is a number assigned to each constituent identifying that constituent

from other constituents of the same type:

(ii) h is the horizontal dimension of the constituent;

dii) v is the vertical dimension of the constituent.

The primes enclosed in parentheses indicate they are optional and thus a line may be

artificial, actual, or a concatenation of the two. The restriction 0 refers to an entry in the

lexicon which contains additional restrictions for forming the constituent and defines the

attributes of the constituent being formed. The lexicon entry indicates how the horizontal

and vertical dimensions of the constituent are to be determined and other attributes which will

be required to complete the structural description of the figure. When the constituent is formed,

its entry is made in the data base and the vertices which are the arguments of the lines

forming the constituent are listed as an attribute of the constituent.

Examples from the set of production rules to form the higher level primitive constituents

required lor the pictorial data being considered are shown in F-'igure 6. The listing of the

grammar Kl* in Appendix 10.2 contains the complete set of rules for all eight primitives

indicated in Chapter 4.

In contrast to juxtaposed elements in linguistics, the above rules do not require the

juxtaposed elements to be ordered. The arguments of the lines are ordered and thus eliminate

any possible ambiguity between figures. For example, assume the following rule where the

arguments are not considered ordered (TS stands for scalene triangle)

•TStw.h.v) :

so either of the two figures may be produced

LDR(vi-vi> I. OR (v. ,V:) • ' Lu(v,,V|,)

J

• 39.

.R(w.h,v) •; = <LN(V|,V|)><Lv(V|,vk) ■ l,H(vk.vl)

- Lyiv^v,) • RECTANGLE

I

i

TKw.h.v) ::- 'L^VV Ul^VV-

LDL(vk,vi) tSOiCELES TRIANGLE

C(w,h,v) >:> <LH(v|1V|)><LD|.(v1,V|,)><Lv(V|,V|t) •

<LDR(v
mW ■'LH<Vn-Vn,)'LDL<vpVn)

Lv(vp.vr) LDR^,^,)-/ CIRCl.K

Figure 6. Examples of Production Rules to Form Higher Level Primitives

•40-

But it ihe arguments of the lines arc considered ordered and defined as earlier, only the left hand

figure is possible.

Having formed all the higher level primitives from the actual and artificial lines, in order

to provide a structural description of the pictorial data, a set of 3-tUples are created, composed

of pairs of contiguous primitives and their respective syntactic relation. The primitives are

paired by finding a subset of the vertices of one primitive to also be a subset of the vertices

of a second primitive, The correct syntactic relation is determined by their definitions in the
lexicon.

ihe general form of a lexicon entry for either a primitive or a syntactic relation is of
the fol low ing form.

NAME; form

Requirements; F(]) Ol (!(])

Assignments; m, j KUJ OAVd,)
i

n, k
Ihe entry NAME can be either the name of a primitive or a syntactic relation. The portion

labeled Requirements lists any restrictions which SAP must consider. The functions F and (1

represent general functions such as length of a line segment and O». is an arithmetic relation

or a relation such as contiguous, "EB", The portion labeled Assignments assigns to variable

ill; either (i) a numeric value which results from the calculation of the indicated expression

where K and H are functions which obtain the \ and y coordinates of the arguments lm and I,

which are line segments or vertices, or(ii) a label nk which indicates the directional value of

an argument of a syntactic relation, ihe lexicon entries for the eight primitives and the three

basic syntactic relations are listed in Appendix 4.2. An example of the entry for the relation

on /u;> oj is shown below,

ON TOP OF: X. Y.*R Kn, .n^,^^)
Requirement ; X(BOT) fflY(TOP)

Assignments : ni ()

n2 LF.

if XCOORD(XLE) XCOORl)(YLE)
then.

"3 XCOORD(\LE) - XCOORD(YLE)
n4 RT

if XCOORD(XLE) , XCOORD(YLE)
then.

nj - XCOORD(YLE) - XCOORD(XLE)

n4 - LT

The 3-tuples constitute a set of triplets. T It,}. Thus triplets are of the form, t, =

'Pk'Pl^m' where pk and p, are members of the set P of primitives and sm is a member of the

set S of syntactic relations, and where pk and p, are contiguous primitives, and sm is the

syntactic relation between them. The definitions of the syntactic relations may be found in

Chapter 4. While the syntactic language in Chapter 4 defined six syntactic relations, only
three of them are actually necessary,

*R1 - on top of

*R3 to the left of

*R5 = is contained within

- n-

the remaining throe being just the inverse of the preceding three. To normalize the graphic

data and reduce the number of different structural descriptions which must be considered,

only the above three syntactic relations are used internally by SAP. If a user provides SAP

with a syntactic siring using relations other than the three indicated, the relations are converted

to tiie three above relations by easily manipulating the syntactic string.

Triplets may also be of the form (X.O.O). Tins occurs if the primitive X occurs in the

figure but is not contiguous to any other primitive in the figure. Triplet:, of this and other

forms require various tests and transformations to be performed on the triplet set. Once all

possible triplets have been formed, the triplet set T is sent to the parsing subcomponentswhere

it is checked for completeness and then transformed into a structural description of the figure,

5.3 THE PARSING SUBCOMPONENT

5.3.1 COMPLETENESS TESTS

Once the triplet set has been formed from all pairs of contiguous primitives and the

syntactic relations between them, the triplet set is tested by the parsing subcomponent for

completeness. To facilitate explaining the completeness tests the triplet set will be repre-

sented by a directed graph. Each edge of the graph has associated with it an orientation

resulting from the end points of each edge which constitute an ordered pair of vertices.

The directed graph D is a triple (P,S,A) consisting of a nonempty set P. a set S which

is disjoint from P, and a mapping A of S into P X P. P X P is the cartesian product of a set

P with itself forming all ordered pairs (pj.p.) such that p,£P and p.CP.

(i) The elements of P arc called vertices and represent the primitives which

are contained in the triplets,

(ii) The elements of S are called directed edges and represent the syntactic

relations which are contained in the triplets,

(iii) A is called the direct incidence mapping associated with D.

If s C S and A(s) = (p^P:) then the directed edge is said to have pi as its initial vertex

and p. as its terminal vertex or ssa. (pi-Pj).

Thus, the directed graph is isomorphic to the triplet set. For example, the triplet set

(«,0, + Ri,), (^,y,*Ri2), (/:i,S,*Ri3). (y,S,*Ri4) would form the directed graph.

It is interesting to note that the directed graph representing the triplet set could be

obtained directly from the two-dimensional picture serving as input. As indicated in Chapter

Two, the figure itself may be considered a geometric graph. A modified dual of this geometric

■42-

graph is the desired directed graph representing the triplet set. To obtain the modified dual;

(i) Consider the geometric graph (figure) with regions R.Chl n). Associate

a point p. with each region R. by choosing one of the points within the

region. If two regions R. and R| are adjacent, join p, and p by an edge

PiPj which intersects the common boundary of Rl and R, only once and

has no point in common with any other boundary of the graph,

(ii' No point p. is assigned to the region surrounding the graph.

(111) The edge pjpi receives a direction and label which corresponds to the

syntactic relation ordering between regions R. and R-.

This procedure yields a new graph D' with vertices p, pn. it is called a modified dual

graph of D.

For example, consider the picture below.

The point p. of region Ri is indicated by the dot and labeled by the greek letter shown. Connect-

ing the dots by the indicated dotted lines and giving a direction and label to the corresponding

connections pro ides the following the directed graph.

*Ri

*Ri.

'Ri.
-♦-)

I
I

I

While the completeness tests are presented in terms of the directed graph to provide

ease of explanation, the tests are also described in terms of the transformation rules which

actually operate on the triplet set. The general transformation rule is of the form, Tl »T2,

where Tl and T2 are strings of triplets of the form («j./S, *Rj,),(a«<j8ä*Rjä),..,(a .ß ,*Rj).

Tl is a subset of the original triplet set T and T2 is the subset Tl after it has been transformed.

As indicated in the previous section, triplets may also be of the form (a,0,0) where ß. and *Ri.

are zero. As a shorthand notation, T2 may hive members of its string of the form (n) which

indicates that the nth triplet on the left hand siue of the rule, Tl, should be transferred to the

I
I
I
I
I
I
I
I
I

■43-

right hand side. T2, unmodified. Triplets may be removed from, added to, or modified in the

triplet set. The order of the triplets in Tl and T2 is arbitrary, though it will be shown in a

later section that it is necessary to partially order the triplet set. The arguments of the primitives

and syntactic relations which were described in the last chapter are not included in the examples

of this chapter as a matter of convenience.

There are three completeness tests which are performed on the triplet set. These tests

are.

1. The test for isolated primitives. An isolated primitive occurs when a

primitive is contained within another primitive in the figure and the

former primitive is not contiguous to any primitives.

2. The test for missing relations. A missing relation occurs when two

primitives,which are not contiguous, are both syntactically related to

a third primitive by the same type of relation.

3. The test for inconsistent relations. An inconsistent relation occurs

when two contiguous primitives are syntactically related when they

should not be.

The completeness tests will now be described in detail.

1. The test for isolated primitives is essentially a check to determine whether the undirected

graph 0 which corresponds to the directed graph D is connected. The test for connectedness

of the undirected graph may be defined as follows;

A finite sequence s^sz sn of edges of the corresponding undirected
graph constitutes an edge progression of length N If there exists an
appropriate sequence of n i 1 vertices P0.pi....pn such that 8| (p, .) &P|)
for i - 1,2 n. The set of edges, without regard to sequencing, is said
to constitute a chain. Finally, a graph is said to be connected if every
pair of distinct vertices are joined by at least one chain. Other graphs
are said to be disconnected.41

The graph 0 is not connected if its edges can be partitioned into two subsets S, and S2 such

that both end points of every edge are in the same subset. There are two cases of isolated

primitives to be considered, depending on whether P, and or Pj, the subsets resulting from

the partitioning of the set of vertices, consists of an isolated vertex Pj th Ht is,S(p,) 0.

(i). The first case of an isolated primitive arises when l,] or F-^ consists of a single

vertex. Hence, either S, or S2 is null. This may occur in a figure when a primitive \ is contained

within a primitive Z, but primitive X is not contiguous to primitive Z or any other primitives

which may be within Z. For example.

The directed graph lor this example is

■44-

The undirected graph is.

W

*R5

'R5

To form a connected graph the vertex X must be connected by an edge, representing a syntactic

relation, to either Z or W. Since in the general case there may be several primitives contained
within L to which X can be syntactically related, X will be related to Z. the terminal point of
the contained within relation. The resulting undirected and directed graphs are.

*R5 *R5
Z X z •• x

*R5 and *R5

W W

The triplet from which the isolated primitive results is of the form (y.O.O). The triplet

set for the example is (W,Z.*R5), (X,0.0) and it is transformed to (W ■ Z. *R5),(X,Z,*R5). The

transformation rule for this type of isolated primitives is
(a.jS,*R5), (y.O.O) *►(!), (y.ß.*R5)

The triplets of the left are members of the original triplet set. The triplets on the right are the

result of a transformation on the original triplets, the (1) indicating that the first triplet remains

the same while the second triplet is transformed as indicated.
The first case of an isolated primitive with P, or P2 consisting of a single vertex may

also occur when a primitive X is contained within a primitive Z, and while X is contiguous to
at least one primitive Y which is contained within Z, there are no primitives contiguous to Z.

For example.

The corresponding directed and undirected graphs are,
Z Z

and

"•►Y

*R2 *R2
To form a connected graph the vertex Z is connected by an edge to one of the primitives

contained within Z, the choice being arbitrary. The resulting undifected and directed graphs

are. choosing X for instance.

<K5 and

-45-

*R5

I

*R2 *R2

The triplet from which the isolated primitive results is again of the form. () .0.0). The triplet

set fo; the example is (Z,0,0) (X,Y,*R2) and it is transformed to (X.Z.*R5).(X ,Y .*R2). The
transformation rule for this type of isolated primitive is.

(«.rt,*Ri). (y.O.O) ► (1). {a.y.*R5)

In the actual implementation, the choice as to which of the two transformation to use is

made by checking the coordinates of the vertices of the primitives. The vertices are attributes
of the primitives though they have not been indicated here.

The occurrence where both P, and Pj consist of a single vertex can be easily handled.
This arises when primitive X is contained within primitive Z, and both X and Z are contiguous
to no primitives. For example.

Z

The directed and undirected graphs are,
Z X

which may be connected to form,

Z »X and. Z X

*R5 *Rb

The triplet set for the example is of the form (Z.0,0) tX.O.O) and is transformed to
(X,Z,*R5). The transformation rule for this type of isolated primitive is.

(a.0,0). (jS.O.O)- ->(/3, 'R5)
(ii). The second case of an isolated primitive arises when the partitioning of the uncon-

nected graph G provides two subsets P, and P2. both of which contain more than one vertex.
This occurs in a figure when a primitive X is contiguous to at least one primitive Y, and while
both X and Y are contained within a primitive Z, neither X nor Y is contiguous to Z or any
other primitives which are contained within Z. For example,

\

The directed is

-46-

*R?

*R2

X ► Y

W

to which is added a relation between 7. and either of the primitives not connected to Z.

The triplet set lor the example is of the form (W.Z.^RS), (X,Y.*R2) and is transformed to

(W,Z.*R5). (X.Y.*R2) (X,Z.*R5K The transformation rule is.

(a,ß,*R5), (y.5.*Ri) ► (1), (2). (y(/3,*R5)

As with the previous transformation rules, their application is in part determined by checking

the attributes of the primitives.

2. The test for missing relations is to determine when two noncontiguous primitives should be

related. The addition of these relations allows further parsings of the figure to be performed,

the adding of relations being the inclusion of more triplets in the triplet set.

An example of a figure which results in a missing relation is.

The triplet set obtainable from the contiguous primitives is.

(X,Y,*R1), (\,Z.*R1)

The directed graph formed from these triplets is,

X

*R1 'R\

Y Z

It will be shown in the next section that two parsings may be obtained from the triplet set.

A third relation can be represented between Y and Z. The triplet representing this relation is

(Y.Z.*R2) and by the addition of this triplet to the triplet set four more parsings of the figure

can be obtained. After the third relation is added the directed graph is,

X

•Rl *R1

*R:
The missing relation test searches the directed graph for the presence of two or more directed

edges which have the same syntactic label and the same initial or terminal vertex. A relation

is considered missing if the noncommon vertices of the directed edges just described are not

connected by a path which does not contain the common vertex. There are two types of cases

in which a missing relation may arise, depending on whether the common vertex is an initial

or terminal vertex.

I
I
i
I
I
I
I
I
I

-47-

If the directed edges with the same syntactic label have the same initial vertex.

the missing relation is between ß and y where *Ri cannot be a contained within relation. It
will be pointed out in the discussion on the inconsistency test that *Rj also cannot be a con
tamed within relation, and of course i • j. The transformation rule which operates on the triplet
set for the situation of the directed edges having the same initial vertex is,

(a.^.*Ri), («,y,*Ri) »(1), (2), Q8,y,*Rj)
The directed graph for the directed edges having the same terminal node is,

a ß

*Ri *Ri

where again there is a missing relation between u and ß. An example of a figure with such a
missing relation is.

which has the directed graph.

Rl 'R\

As pointed out earlier, by adding a triplet which relates X and Y to the triplet set will allow
additional parsings of the figure if *R1 is not a contained within relation.

However, if *R1 is a contained within relation it is mandatory to determine the missing
relation between X and Y. Because primitives related to Z by a contained within relation are
are not related in the triplet set it will not be possible to parse the figure. The absence of
the syntactic relation between X and Y from the triplet set
may be because either X or Y was an isolated primitive which was
placed in a triplet to remove a case of incompleteness. For
example,

4H-

The graph for the preceding figure is,

*R5

Syntactically relating X and Y results in the graph,
*R2

X ^Y

*R5 'R5

The transformation rule which operates on the triplet set for the situation of the directed edges
having the same terminal vertex is,

(a,ß*m, (y,/3,*Ri) »(1), (2), (a.) ,*R.i), where i/ j.

The problem of obtaining all possible syntactic relations which can occur between primitives
contained within a given primitive is not solved by this formulation. Though it is only a minor

extension of the above, and the additional triplets will provide more parsings, it is not clear
at this point that all such possible parsings are necessary or even desired.

}. The test for what may be considered inconsistent relationships must also be applied to the

triplet set before any attempt is made to parse the figure. The relations are really not incon-

sistent but would appear so to the parsing algorithm when an attempt is made to use them and
so they must be removed from the triplet set.

(i) The first case of an inconsistent relationship between a primitive X and a primitive Y can
be determined on the directed graph of the figure by a vertex X which is, on the corresponding

undirected graph, adjacent (a and ß are called adjacent vertices if s~((i&^) for at least one
edge) to a vertex Y where X is also the initial vertex on the directed graph of a directed edge
labeled by a contained within relation and which has Z as the terminal vertex and Y is also
adjacent to Z by a directed edge which has the same label as the directed edge connecting X
and Y. For example.

has the directed graph.

*R1

The resulting directed graph is.

-41)-

*R1

»R5

*R5

*R1

-*~Z

The transformation rule which removes the triplet from the triplet set is,

(«,/tf,*Ri), (fi.y.*R5). (a"7.*Ri) ^-(2), (3)
Note that the bar over the triplets indicates that the order of the primitives can be reversed

However, reversing the order in one of the triplets of a rule necessitates reversing the order
in all of the triplets of that rule which have a bar over them. The reverse ordering of the triplets
will eliminate inconsistencies which occur in a figure such as.

using the transformation rule,

lß,tt,*m, (jS,y.*R3), (>',«.*Ri) ^ (2), (3)

di) The second case of an inconsistem relation between X and Y is determined on the directed
graph by a vertex X which is adjacent to a vertex Y and where X is an initial node of a directed

edge to a vertex Z which is labeled by a contained within relation and Y is an initial node of
a directed edge to a vertex W which is labeled by a contained within relation and / and W are
not the same vertex. Foi example,

-50-

which has the directed graph.

Note that the first rule for inconsistent relations will reduce the directed graph to,

*RI

•»■ W

*R5

The second transformation rule for inconsistent relations removes the relation between X and
Y. This rule is,

(a,/y,*R5), (n,y,*Ri), (/3,5,*Ri), (y,8,*R5) —*►(!), (3), (4)
In the example, a = X, /3 = Z, y = Y and S = W.

(iii) The third case of an inconsistent relation between X and Y is determined on the directed
graph by a vertex X, which is the initial vertex for a directed edge to vertex Z which is labeled
by a contained within relation and X is also the initial vertex for a directed edge to vertex Y

which is labeled by a contained within relation and Z is the initial vertex for a directed edge
to Y which is labeled by a contained within relation. For example, the figure

"■■ ̂ ~

has the directed graph

'RS

♦R5
■^ Z

*R5

1 -51-

i
I
I
I
I
I
[

The resulting directed graph is,

*R5 »R5

and the transformation rule which removes the triplet from the triplet set has the same form as
the rule before last, where i = 5.

(j8.a,*R5), (/3,y,*R5), {y,a,*R5) ^(2), (3)

The transformation rules are summarized in Appendix 10.2. They have been created to
process the triplet set, the final triplet set then being transformed into a tree structure and

Reverse Polish string. The transformation rules have developed out of the nature of the pic-

torial data being considered and the primitives and syntactic relation used in the grammar to

structurally describe the data. The rules are not expected to beexhaustive though they will
serve a great many configurations of the primitives and syntactic relations defined in the

previous chapter. Once the triplet set is considered complete the set is partially ordered.

5.3.2 PARTIAL ORDERING OF THE TRIPLET SET

Following the testing of the triplet set for completeness and before any tree structure
can be formed from the triplet set, the triplet set must be partially ordered. The partial ordering
forms subsets of the triple set, which in turn allows the tree structures or parsings to be readily-
obtained from the triplet set. The partial ordering is as follows

(1) The triplet set is scanned for a triplet which contains a contained within relation. The
initial and terminal vertices of this triplet are subscripted throughout the triplet set with the

number, k. of the subset being formed. The triplet containing the contained within relation is
then removed from the triplet set, but must be replaced in the triplet set if Step 3 is not found
applicable to any triplets.

(2) The triplet set is now scanned for other triplets which have the same terminal vertex as

the terminal vertex in Step 1 and also a contained within relation. The initial vertex of anv
such triplet is subscripted throughout the triplet set with the number k. The triplet found in
Step 2 with the contained within relation is then removed from the triplet set.
(3) The triplet set is now scanned for triplets which have vertices which have a k subscript
except those which have a terminal vertex which is the same as the terminal vertex of the
triplet found in Step 1. These triplets are placed in the k'h subset. The vertices of any
triplet placed in the k,h subset are subscripted throughout the triplet set with a k subscript.

If a triplet which is k subscripted contains a contained within relation, the vertices of
the triplet are desubscripted throughout the triplet set, and Step 1 is repeated where k is set
to k+1. However, before the k+1 subset is formed, the k subset is completed,

(4) When no more triplets can be added to the kth subset, the k+1 subset is formed. If there
is no k+1 subset to be formed. Step 1 is repeated. If Step 1 produces no new triplets to be
subscripted, the unsubscripted vertices of the triplet set are subscripted with a 0.

An example of the partial ordering of a triplet set is shown in Figure 7. Once the triplet

set has been partially ordered into subsets, a partial ordering is plf ced on the triplets in the
subsets. The partial ordering within the subsets can be described by the following:

(5) If three triplets in a subset Jtisfy either of the two rules listed below then the three

■52-

(T.Z.*R1), (W,Y,*R2), (W,Z,*R5). (X,W,*R5), (Y,Z,*R5)

Step 1. (T.Z,*R1), (W,Y.*R2), (W, ,Z , .*R5).(\ .W,*R5), (Y,Z,*R5)

(T.Z^'kRi), (W,,Y,*R2), (X,W,,*R5)) (Y.Z1,*RS)

Step 2. (T1Z1i»Ri)) (W,,V11*R2), (X.W^^RS), (Y,,/.,,^?)

(T.ZJ^RD, (W,.Y1.*R2), (X)W1,*R5)

Step 3, (T,Z1.*Ri), (WI,Y1,*R2). (X.W^+RS)

I I

Subset I

Step 1. (T.Z^RD, (W2.Y1.*R2), (X2,W2,*RS)

I II I
Subset 1 Subset 2

Step 2.3. ^

Step 4. (T0,Z1,*Rl)1 (W2Y1.*R2). (X2,W2,*R5)

' 1 I IL I
Subset 0 Subset 1 Subset 2

Figure 7. Example of Partial Ordering of a Triplet Set

•53-

triplets are subscripted by the number of the ra*h such grouping in the k,h subset. Note that

the triplet can be subscripted more than once by these rules, where i,j • 5.
(i) (a,j8,»Ii), (a.y,*Ri), (/J.y. + Rj)

For example.

JL n
(ii) (a.ß.*Ri). (y./S^Ri), (a,y,*Rj)

For example.

4L

The partial ordering of the triplet set into subsets is to enable sublevels of syntactic
tree structures to be formed easily. The ordering within the subsets is to allow particular
triplets to be suppressed while a tree structure is being formed. Because the triplets are

eventually to be used, they are suppressed but not removed from the triplet set.

5.3.3 THE SYNTAX TREE

Once the triplet set has been partially ordered it is transformed into a set of binary tree

structures. Each tree structure represents a parsing of the figure where only primitives are
allowed to occur as terminal points (leaves) of the tree and only syntactic relations to occur

at nonterminal points. As indicated in 5.1, the following discussion on the tree structure is

presented only to illustrate the formation of the structural description. Section 5.3.4 describes

the process by which the structural description in the form of a string can be obtained directly

from the triplet set.
The tree structure is formed by a chaining process which operates on linked triplets.

Two triplets are considered linked if they have a common primitive. In order to form a tree
an arbitrary triplet is chosen as the starting point and is written as a binary tree with two
leaves. Thus, the triplet (a,/3,*Ri) forms the tree,

*Ri

\3
where the tree structure preserves the ordering of the elements within the individual triplets.

The chaining process now replaces the leaves of the tree with the syntactic relations and

corresponding primitives taken from the triplets which are linked to the triplets which compose

the tree. This process is continued until the triplet set is exhausted.
For example, the figure and corresponding triplet set transform into the following tree

structures.

gives
*R1

(T.Y.*R1)

(X,Y.*R2)

(Y,Z,*R2)
■*■ Y H^Z

*R2

-54-

There is no need to subscript the primitives of the triplet set since no subsets will be formed.

The steps in building the tree structure are listed, where the (T,Y,*R1) triplet is chosen first
in building the first tree structure.

1. (i) *R1 A
T Y

(ii) *R1

/\
T *R2

/\
X Y

(iii) *Rl

*R;

/
X *K2

/\

For completeness, the other five parsings are shown.

2. (i) *R1

/\

(ii) *R1

/\
T Y 1 *R2

/\
Y Z

(iii) *R1

/\
T *R2

/\
*R2 Z

/\
X Y

3. (i) 7\ (ii) *R2

/ \
X Y) i *R1

/\
T Y

■55-

(iii)

I
I
I
I
I

4. (i) *R2

/\
X Y

*R2

/ \
X *R1

/\
T *R2

/\
Y Z

(ii) *R2

/\
X *R2

(iii) *R2

/\
X *R2

/\
♦Rl Z

T Y

5. (i) *R2

/\
Y Z

(ii) *R2

/\
*R1 Z

/\
T Y

(iii) *R2

'Rl Z

*R2

6. (i) *R2

X Y

(ii) *R2

/ \
*R2 Z

A
X Y

-56-

(iii) "R2

/\
•R2 NZ

*R1

The tree structures presented in the example may be considered as existing on a single

level. However, the portion of the tree representing the syntactic relations of a primitive

which is the initial vertex (on the directed graph representation of the triplet set) of a contained

within relation or is syntactically related to a primitive which is the initial vertex of ^contained

wuhin relation, drops to a secondary level, A double line represents the contained within
relation and annexes the secondary level in the tree structure. The n,h level of the tree struc-
ture can have a substructure annexed to it, forming an n + 1

ST
 level . For example, given

and the triplet
set is.

(T.Z,*R1)

(W,Y,*R2)
(W,Z,*R5)
(X,W,*R5)
(Y,Z,*R5)

The triplet set has been shown to reduce to (T^Z^Rl), (W2,Y ,*R2), (X W R5)
One parsing of the figure is developed as follows; • 2- 2' •

(1) *R1

/\

(2) *R1

T Z

\
*l

/ \

*R2

/
W y

(3)

■57-

*R1

As indicated eailier. the forming of subtevels in the tree structure is the reason for the

ordering of the triplet set into subsets. The partial ordering of the triplets within the subsets

is to facilitate the suppression of triplets while a tree structure is being formed. The sup-

pression of the triplets is necessary because the triplets indicated by either of the triplet

subsets below (where i,j'5). contain redundant information.

(i) (a./«,*Ri). (a,y,*Ri), Q3,y,*Rj)

(ii) (a./-i.*Ri). (>'.ß,*Ri), («.y.*Rj)

Any two of the three triplets of (i) or (ii) completely determine the third triplet. The redun-

dancy is evident since the third triplet is often added to the triplet set because a missing

relation is determined by the completeness tests. The added triplet provides additional pars-
ings of the figure.

The partial ordering of the triplets of the subsets which comprise the triplet set place

subscripts on the triplets which satisfy either of the above subsets. To correctly use the

partial ordering within the subset, any two of the three triplets may be used in forming the tree

structure and the third triplet is suppressed. Since the order in which the two chosen triplets

are used determines different parsings, there are six possible parsings using one of the above

triplet subsets. Whether all six parsings are distinct depends on the particular figure being

parsed. The six possible parsings of the three triplets of triplet subset (i) are listed in Figure

8. A set of six similar parsings can be obtained from the triplet subset (ii). The subscript

on the i and j are to distinguish from which triplet each syntactic relation came.

While the arguments for the syntactic relations which were described in Chapter 3 are

not being shown in the examples, it is important to note that their values do change as they

enter the tree structure. The difference between two parsings may only be the difference in

value of the arguments of a single syntactic relation appearing in the tree structure. Parsings

(1) and (3) of the above example illustrate this fact. The difference between parsings (2) and

(4) are also only the difference in the value of the arguments of *Riaß in (2) and *Rif, in (4).

The syntactic relations found in thj triplets transfer directly to the tree structure but

the value of their arguments do not. The arguments change in v.Tue because, while the higher

level constituents are being related by the same syntactic relations which originally related the

primitives of the figure, the higher level constituents have different dimensional values than

the primitives and hence require different values for the arguments of the same syntactic-
relations.

The obtained syntax tree can be considered a rooted tree. A rooted tree is a tree in which

one node, called the root, is given a special significance. This introduces a direction in the

i). *R1^

\
Ki.

*Ri
")

(3).

*Ri aß

ß

ß

■58-

c). maß

^ßy

ß

*Ki

(4).

(6).
*KJ«v ißy

Ri,

Figure 8. F'ossible Parsings of a Triplet Subset

I ■59-

tree; away (or in this case down) from the root and towards (up) the root. If a tree is rooted
each node has a node immediately above it, unless the node is the root of the tree. In addition,

because there is a specified order of the lines around any node, the tree is considered ordered

I
I
I
g
I
I
I
I

where the nodes are ordered from left to right. A property of the node to be used later, called

the outer degree of the node, can be determined by drawing paths from the root to the leaves of

the tree. This uniquely associates a direction with each arc. The outer degree of a node x is
independent of the orientation of the tree.

5.3.4 THE REVERSE POLISH STRING

The tree structure is not the desired final form of the structural description. It will be
converted to a linear string which uses Reverse Polish notation to provide a more useahle form
of the structural description to the semantic component. As pointed out earlier, the explicit
formation of the tree structure is not a necessary step in order to obtain the Reverse Polish
string.

The tree structure can be readily transformed into a linear string which uses Reverse
Polish notation to order the constituents and the syntactic relations between them. The string

can be written by traversing a path around the tree structure from left the right. The string is
written from left to right, where primitives are pulled off as they occur and syntactic relations

are placed in the string at their last possible encounter with the path. The one exception is in

leaving a sublevel, in which case the contained within relation is entered into the Polish String

after a primitive of the next higher level is entered into the string. Recall that the con/omerf
within relation is represented in the tree structure by a double line.

An example should clarify any confusion on this process. Given the figure,

a
i)

The graph and triplet set is:

-60-

(T.D,*R1)

(A,I),*R5)'

(B,D,*R5)

(C,D.*R5)

(A.B.*R2)

(A.C,*R1)

Subset I

One possible parsing of the figure is.

/*Ri(

The Reverse Polish string of this parsing is *uill up from the dotted path giving,

T,A,C,*R1,B,*R2.D.*R5.*R1.

At this time no attempt is made to obtain all possible parsings. Otherwise, a triplet relating

B and C would be needed though it would be suppressed in this particular parsing. As men-

tioned earlier, it is not clear whether every possible parsing is needed for pattern recognition

or whether producing every parsing is merely a waste of computer lime. The number of different

parsings which can be semantically interpreted by the program depends on the degree of exten-

siveness of the grammar.

In order to obtain the syntactic string directly from the triplet set, the chaining process

which operates on linked triplets is used. The chaining process replaces a primitive in the

string with the syntactic relation and corresponding primitives of a triplet which is linked to

the triplet containing the primitive being replaced. As is shown in forming the tree structure,

partial ordering and suppression of triplets in the triplet set are necessary.

Using the example on this page, the steps in forming the syntactic string are a; follows:
(1) T,D,*R1

(2) T.A,D.*R5.*R1

(3) T,A,B,*R2.D.*R5,*R1

(4) T.A,C,*R1,B,*R2,D,*R5,*R1

-61-

In order to lest the well-formedness of a syntactic string in Reverse Polish form the

procedure outlined below is followed.

(i) Assign a weight W to each element of the string. The weights are assign-

ed by the formula W-l d, where d is the number of lines leaving a mule

(away from the root as defined in 5.3.3).

(ii) Find SW(i) for i 1 n elements of the string, where the left most

element of the string is i=l.
n J

(iii) Well-formedness requires that SW(i) 1 and lW(i) for any j ■ n i s never

less than 1, i.e.. SW(i) ■ 1, j 1 n.
i = 1

Testing the well-formedness of the syntactic string of the previous example:
T A C *R1 B *R2 D *R5 *P,1

i : 1 2 3 4 5 6 7 8 9

W(i); 111-11-1-1 1-1

SW(i); 12 3 2 3 2 1 1 1
J 9

Since IWd) 1 lor all j 1 9 and SW(i)-l, the string is well-formed. Note that the degree d
i i

of *R5 in the tree structure is 0 and the degree of the primitive D is 2

5.4 A SUMMARY OF THE SYNTACTIC COMPONENT

The syntactic string will now be sent to the semantic component for a semantic inter-

pretation. Because the semantic component is composed of a grammar which operates on

linear strings of constituents, the picture which is a two-dimensional configuration must be

reduced to a one-dimensional configuration. This reduction is performed by the syntactic

component which, in summary obtains the structural description in the form of a linear string by

using the grammar Kl* to form the lines in the figure from the discrete points and then form the

higher level primitives from the lines. Because the syntactic relations are contained implicitly

in the pictures but must be made explicit in the syntactic strings for the semantic component,

the syntactic component develops the triplet set of 3-tuples which are primitives and their

corresponding binary relations. This triplet set is preprocessed and then normalized for the

semantic component by writing it as a linear string using Reverse Polish notation.

The transformation of the triplet set actually results in a set of structural descriptions.

These multiple parsings can be the result of two different processes.

(1) Because there is a choice as to which artificial lines to add to a figure

to allow the figure to be parsed, each different configuration of the figure

after the artificial lines have been added provides a different triplet set.

(2) In turn, each triplet set can provide multiple parsings of the figure, as

described earlier in this chapter.

Either of the above steps can cause the number of parsings of a figure to be quite large.

The resulting syntactic descriptions are sent to the semantic component, the analyses

of which are described in the next chapter.

-62-

6. THE SEMANTIC COMPONENT OF SAP

6.1 A SEMANTIC INTERPRETATION

The semantic component operates on the structural tlescription L^^ to provide a semantic
interpretation to the pictorial data, using a grammar to provide this interpretation. As indicated
in the previous chapters,a one-dimensional grammar operates on linear strings. For this reason

the syntactic, component transforms the input picture L.i to a syntactic string L*-. which struc-

turally describes L.. The grammar of the semantic component operates on the syntactic string,
eventually placing it into one or more classes. The classification of the syntactic string is
actually the assigning to it the names (labels) of the classes into which it is placed. The

forming of higher level constituents from the symbols of the syntactic string is defined by the
rule stated in Chapter 4 for forming segments of syntactic strings. This rule is,

<sss^::=<primitive>' primitive^ <syntactic relations |
<sss><pr nrtivexsyntactic relation> |

<primitivt ■ <sss"'<syntactic relation> |
<sss><sss><syntactic relations

This is partially represented by a tree structure in Figure 9. The semantic component, in

using the grammar, will assign names of classes to the constituents which are generically
represented by <sss> in the tree of Figure 9.

< s s s>

<syntactic relation>

<syntactic relation>

■primitive- <primitive> <svntai tic relation;»

Figure 9. General Syntax Tree

Before desc ibing the grammar which comprises the semantic component, it is worthwhile
to first furthei iiscuss the syntactic description which the semantic component receives. It
was shown in the last chapter that the Reverse Polish string, which is the syntactic description,
is obtained from a tree structure which is also a syntactic description of the figure to be
semantically interpreted.

-63--

i

I
I
i
i
I

Using the example of the directed graph,

<primitive>p

<syntactic relation^

<primitive>
P2

<syntaclic relation^

<primitive>p

the tree structure obtained by the syntactic component representing one parsing of the figure
is of the form shown below.

syntactic relation>.

<syntactic relation>
<primitive>

<primitive>r <primitive>p

The important point is that the tree structure immediately above is isomorphic to the tree struc-
ture shown below,

<sss>

<primilive>r
<syntactic relation^

<primitive>pi <primitive>p2 <syntactic relation>s

the general form of which is presented in Figure 9. However, the <sss> constituents in the
above tree structure remain unlabeled by the syntactic component. It is the semantic component
which will assign labels to the <sss> constituents.

The algorithm described in Sections.3.3for creating tree structure of the form shown on
this page could be easily applied, with only slight modification, to create the tree structure
above from the triplet set. Also, the algorithm described in Section 5.3.4 for forming the Reverse
Polish string from a tree structure directly applies to the second tree structure above.

■64-

In view of this, it is somewhat arbitrary as to which form of tree structure is chosen to repre-

sent the parsing of the figure. The second structure has the advantage of explicitly representing

the constituents which are to be labeled by the semantic component. However, in this ieport

the first tree structure on the last page is used because it is a more concise notation by impli-
citly representing the structural constituents.

The grammar of the semantic component K3* is a 5-tuple (T3,N3,R3,C3,SC). The set

T3 is the set of terminal symbols and is a union of the set P of primitives and the set S of

syntactic relations. The set N3 is the set of nonterminal symbols of the grammar. The set R3

is the rules of the grammar which determine which generic label should be assigned to a

particular constituent. The set C'3 is a set of matrices which contain constraints for the rules

of R3. The goal of the grammar K3* is a scene. SC. and does not appear on the right hand

side of any of the rules of R3. The grammar K3* is partitioned into two levels, each level

consisting of rules from R3 which assign meaning to the figures of the scene.

The first level of the grammar consist of rules which assign meaning in terms of the

structure of each individual figi re. The second level accepts those structural descriptions

which have not received a singular semantic interpretation from the first level of the grammar.

The figures being sent to the second level of the grammar may be ambiguous at this point,

that is. more than one meaning has been assigned to the figure. However, it is just as likely

that the figure cann M be completely identified by the first level. The second level attempts

to semantically inteipret the figure in terms of other figures in the scene. Thus, the second

level uses the contextual surroundings of the figure, i.e., the syntax of the scene, to assign

meaning, while the first level uses tiie syntactic structure of the figure, i.e., the contextual

surroundings of the primitives to assign meaning to the figure. Contextual constraints are

considered at both levels of the semantic component jrammar. In addition it is desired that

the second level grammar use a form of deductive inference decision making. The subcompo-

nents of the semantic component are shown in Figure 10.

To effectively use the first and second level grammars, the syntactic string is first

processed by an abstracting subcomponent. The abstracting process described in the next

section obtains an abstraction of the figure to be identified. This abstraction eliminates many

fruitless attempts by the first level grammar to assign a semantic interpretation to the figure.

6.2 THE ABSTRACTION OF FIGURES

To effectively use the rules of the first level, an abstraction of the structural description

is obtained to provide a preliminary classification of the figure without interference from details

of the figure. The preliminary classification eliminates the searching through a great deal of

the grammar which would not be applicable. Thus, the first level of the grammar would be

partially ordered with respect to general classifications of the graphic data. It is reasonable

to consider all data to be amendable to some form of classification based on major character-

istics of the expected figures.

The abstraction subcomponent receives from the syntactic component the Reverse Polish

string representing the structural description of the scene. Thus, the first task of the abstraction

subcomponent is to obtain the individual figures of the scene to enable the first level grammar

to operate on these syntactic string segments independently. To obtain the syntactic string

segments of the scene a modified bottom-up strategy is used on the syntactic string operating

on the string from right to left.

■65-

Abstracliü

tigures

1 si I ,evel Grammar;

Semati tic

Inlerprotation

ol liuurL-

2nd I ,evel Grammar

Semantic

Interpretation

ol scene

liguru 10, The Semantic Component

■66-

The syntactic string is segmented into the various figures according to the grammar rule

for forming syntactic string segments. This rule and two others used to ibtain the individual

figures are listed beiow.

< s c e n e;

vfigure"
<sssv

<fittute>,, ^scenex, <8cene>.,
-syntactic relation^/*Ri{n1 "■0,n2,n3)

for i=l,2,3 or 4

<sss '. .
i<8S8>1,<8S8>,, .SYntactic relation> | l| ii -
^sss^.. <primitive^.. ^syntactic relation^

ii ' ii J

■-primitive ■.. <sssN
1 ^syntactic relation> |

primitive^., <primitive^.. -^syntactic relation"-

The i and j subscripts on the constituents will be explained shortly. The restriction

on the production rule for a scene indicates that a figure is defined to be either of the followinj-:
(1) A figure X is represented by a syntactic string segment sss1 and is

related to a figure Y represented by a syntactic string segment sss2 by a

directional relation (horizontal or vertical relation) *Ri(n1 ,n^ ^3) where
i=l,2,3 or 4 and n^O. Since n^O signifies the two figures X and Y

are touching, n, •() requires X and Y to be two related constructions in a
picture which have no contiguous elements. As defined in Chapter 4,

n2 and n^ indicate the secondary position between constituents, where
ns^O and is not present for a directional relation.

(2) A figure X is represented by a syntactic string segment sss, and is

related to a figure Y represented by a syntactic string segment sss2 by a

contained within relation, *Ri(n1,112^3) where i=5 or 6.
The two above definitions allow figures to be drawn in a completely recursive manner.

Thus, the first definition allows any number of non-contiguous figures in a horizontal row,
vertical column, or combination of the two to be structurally represented in a syntactic string
and the abstracting component will be able to segment the string into the individual non-
contiguous figures. Similarly, the second definition allows any number of figures to be imbedded

within a figure. For example, the use of the two definitions allows a row of houses to be

imbedded within a house, as shown below.

Or, a row of houses can be imbedded in
a subconstituent of the house, such as.

■67-

If it is desired to not allow figures to be imbedded within figures, it is necessary only to

require the syntactic relation which occurs on the right-hand side of the rule defining -scene-

to be a directional relation and eliminate the second definition ol above.

Once the syntactic string has been segmented into the segments representing the figure

of the scene, the abstracting subcomponent then abstracts the syntactic string segment to

obtain the basic features of the figure. The abstracting process in effect first removes ail

detail from the figure. This leaves an outline of the figure which is further reduced to a set

of abstractions of the figure, each abstraction somewhat more abstract than the last. In attempt-

ing to generally categorize the figure, the abstractions are used in the reverse order of which

they were produced, the most abstract first. The method for performing the abstractions is

actually a heuristic which is independent of any grammar being used to semantically interpret
the figure.

To obtain the abstractions of the figure from the structural description of the figure, as

in obtaining the string representing the individual figure, a bottom-up strategy is used on the

syntactic string. The rule to perform this abstracting is the same rule shown above for forming

the syntactic string segment constituents. The i and j are attributes of the -sss - constituent

which allow the abstractions to take place. As the -sss constituents are formed, they arc

assigned the name of the predominant constituent of those constituents which form the - sss:> .

This predominant constituent is the one which has the largest area. Thus, the i subscript on

the - sss-- constituents is the name of the predominant subconstituent, where i may be R,

Ti, etc.. The value of i is then used to name higher level constituents when the particular

constituent is considered the predominant constituent. The j is the area of the constituent

and is used to determine which constituent is the predominant constituent in forming a higher
level constituent.

The following example should clarify the process of abstracting a single figure. The

syntactic string segment constituents are represented in the string by Sn(i.k,m) which is defined

segment constituent number; i 1 if the predominant constituent is a rectangle. \=2
if the predominant constituent is an isosceles triangle: k - horizontal dimension; m = vertical

dimension. Step I is the syntactic string of the figure.

!. R<3.2,2) R(4,2,4).*R4,R(5,2,:).*R4,Tl(l,8.6),*RI,R(2,4,5),R(l,8,l2),*R5(FJOT),*R
2. R(3,2,2),RU..'',4),*R4,R(5,2,:).*R4,TI(1,8,6),*RI,SI(1,8,I2),*R1

from S|(l.8,12) —»R(2,4,5)^(1,8.12),*R5(B0T)

3. S2(I,4,4),R(5,2.2),*R4.TI(1,8,6),*RI,SI(I,8,I2),*R1

from S2(l,4,4) —- R(3,2.2),R(4,2,4),*R4

4. S3(1,6,4),T1(I,8,6).*RI,SI(1,8,12),*R1

from S2(l,6,4) —► S2(l ,4,4),R(5,2,2),*R4
5. S4(2,8,10),SI(I,8,I2),*R1

from S4(2,8,10) — S3(1.6,4),TI(1,8,6),*R 1
6. §5(1,8,22)

from 85(1,8,22) —►84(2(8,10),SKI,8,12),*R]
Looking at the abstractions pictorially.

■68-

1. R3

4.
6.

Examining the abstractions in thei r reverse order, that is the most abstract first, the fifth
abstraction or Step 5 would indicate that the figure should be operated upon by the first level
grammar and cons.dered to be in a class which represents the category of house type.

The six categories into which the pictorial data being considered in this report may be
placed after it has been abstracted to a string composed of the three ordered constituents
■csyntact.c strmg segment-, Syntactic string segment, Syntactic relation- are listed below

I. STORE: CD Rectangle contained within rectangle and
the final abstraction is a rectangle.

2. HOUSE:

3. SILO: A

Triangle above rectangle, where 3* (area
of triangle) • (area of rectangle) and the
final abstraction is a rectangle.

Triangle above rectangle, where 3* (area
of triangle) ■ (area of rectangle) and the
final abstraction is a rectangle.

■69-

4. TREE:

ü
Triangle above rectangle, where (area

of triangle) > (area of rectangle) and

the final abstraction is a triangle.

5. BULBOUS;

6. OFFICE BLDG; I i

Circle above rectangle, and the final ab-

straction is a circle or rectangle.

Rectangle above rectangle, and the final

sbstraction is a rectangle.

7. UNICORN: Anything which cannot be placed into one of

the first six categories.

Because the segmenting of the syntactic string into segments which represent individual

figures in the scene and the abstracting process of the figures both use a bottom-up strategy,

the two processes can be performed at the same time. Thus, while a scene is divided into

the figures which comprise it. the figures are being abstracted. The use of the bottom-up

strategy avoids the left recursion problem of the top-down strategy described in Chapter 2.

For example, consider a scene composed of the two figures below.

R2

T12

R4

R3

The abstraction subcomponent would operate on the syntactic string to obtain the tree

structure shown on the next page. The tree structure indicates the individual figure and its

abstractions. As defined earlier, the j subscript on a constituent is its surface area. The

relations and primnives do not have their arguments shown. The relation *R4<i) represents

■70-

the restricted relation »RUn, -O.n^nj) previously discussed in this chapter. Again, !he n, -1
indicates that the figures are not contiguous which in turn allows the abstracting component

to separate them.

TI1,R:,*R1 . T12

syntactic

relation^

*R5 , *R1

vsyntactic
relation ■

*R4C

The entire abstracting subcomponent has been implemented in FORTRAN on the IBM 7072.

The program is described and listed in Appendix 10.1 of this report.
The abstracting process is a valuable tool in dealing with the problem of multiple

parsings. If all of the parsings must be operated upon by the semantic component, the abstract-
ing process should have a great deal of time in eliminating some unproductive attempts by the

first level grammar. The multiple parsing problem is also the reason for the semantic compo-
nent being divided into two levels. The division allows the syntactic string to be semantically

interpreted, one segment (which represents one figure) at a time. If each figure was not pro-
cessed separately, because of the large number of parsings per figure, the computer could

possibly run out of space, or use an excessive amount of time. For if a scene of two figures

which have m, and m2 parsings respectively, the maximum number of passes through the seman-

tic component 1st level grammar to identify the figures in a scene is m, + m2. However, the
the number of passes through the semantic component grammar if the en'.ire scene must be

considered at each pass is m, x m. The fact that the abstracting process is a heuristic

independent of the grammar rules which it uses may prove to be an additional nicety of the

procedure, allowing various criterion other than largest area to determine the predominant

constituents.
The abstracting process provides a Gestalt of the figure and hence plays an important

role in human pattern recognition. M.D. Vernon42 points out that the most inip>'riant feature
in human pattern .ecognition is the general outline or contour of the object. This may be
because a child learns first by touch and thus associates objects with their contour. In any
case there is little doubt that an adult tries to first classify a figure g-nerall;, before he
proceeds to identify it. Few individuals would try to identify a figure as a church if they

didn't think fiat the figure is some type of building. Another manner in which psychologists

might describe the abstracting process is providing a set. That is, the details of the figure

I
i

-71-

make sense only because we know what type of details to expect by means of a set orientation

M (no connection to set theory). The abstracting process allows this orientation to take place.
H A significant use of the abstracting process is in the filtering of a complex scene. For

example, if aerial photographs are to be scanned for a particular figure, the abstracting process
would quickly eliminate those figures from the scene which are of no interest. This avoids the
brute force approach of attempting to identify every figure in the photograph. Of course, the
choice of criterion by which to perform the abstracting is critical.

Once the abstracting process is completed, and by means of one or more of the abstrac-
tions the figure has been roughly classified, the original structural description (the complete
syntactic string segment) is operated upon by the first level of the grammar.

S

I
I
I
I

m

m
em

6.3 THE FIRST LEVEL GRAMMAR OF THE SEMANTIC COMPONENT

As pointed out in Chapter 2, the primitives have no meaning independent of their use, in

a particular environment. This problem has not arisen in the work by Narasimhan because

the primitives are lines as are the graphic data. Hence, except for noise, if a primitive is pre

sent it is known to be a bubble chamber track. The severe semantic constrictions on his proble
provide the primitives with a singular meaning. But in a less semantically constricted proble
where the primitives may have one of several meanings, a major difficulty atises. The probl
is that a single primitive, which is able to have multiple meanings, can be assigned a meaning
only in the context of other primitives. For example, a rectangle cannot be identified as either

a door or a window until its location and dimensions relative to the surrounding primitives
are considered.

in view of <his difficulty, many of the rules of the first level grammar of the semantic
component are context sensitive, providing restrictions which must be satisfied before the
rules are considered applicable. These restrictions are generally concerned with the relative
size or location of the constituents of the rule. The rules are of the general form,

X.:=Y,W,*Ri,Z,*Rj '#

0r JF(X|() 0 ouj
xk.xm,*Rj(n,,n2.n3)

where the arguments of the constituents are not shown. Note that the right hand side of the

rule is written in early Reverse Polish notation. The rule states that constituent X may be

formed from constituent Y in relation Ri with constituent W, this in relation Rj with constituent
Z, etc., within the context of,0.

The 0 is a set of contextual constrictions {0.} such that the members of 0 may be of
either form indicated.

1. When >r. F(xk) G Ci(xm), F and G are functions which obtain the height
(H) or width (W) of the constituent xk and xm where k may equal m.
The 0 is a member of the set of arithmetic relations. For example,

if P-H, and xk = R (a,b,c) then F(xlt)=H(R(a,b,c))= c.

2. When/fr.-:xk,xm, ♦Rj (n^nj, n3) the j, n,, n2. and n3 may be constrained
values indicating restrictions on the syntactic relation between the

constituents x|(and xm. The definitions of n,, n2, and nj are found
in Chapter 4.

Thus the constraints may operate on a single constituent or relatively between two

constituents. The use of the contextual constraints raises a major problem. The problem is

■72-

that a single constraint may not necessarily operate on constituents of a single rule but across
rules on constituents at different levels. This requires that the formulation of the restriction,s

be defined and noted independently of the formulation of the rules.
To accomplish this the constraints are written as a set of matrices. C3. Each matrix

contains the constraints for different constituents which are restricted by a common constraint.

It is then possible for the rules to be flagged with the entries in the matrix which pertain to
the constituents of the rules which are to be constrained. While the constraints are between

constituents they actually determine the Identification or well-formedness of a figure, depending

on whether the grammar is being used for recognition or generation. Since it is the figure for

which the constraints are ultimately operating and because a top-down strategy is used by the
first level of the semantic component, the matrix entries which apply to the constituents of a

figure are attached to the rule which has the name of the figure on the left-hand side of the rule.
An example should clarify the preceding paragraph. Consider a grammar which wishes

to be able to recognize either of the two structures shown in their general form.

Assume that the structures can be identified as either a doghouse, shed, or garage

depending upon how they satisfy various constraints. To perform this recognition the following
grammar is used. It should be noted that the use of the grammar is to assign labels to the

constituents of the parsing of the figure. Thus, the semantic grammar is essentially assigning
labels to the <sss' constituents defined earlier, the assignment algorithm being performed in

a top-down manner.

<type 1 bldg •::= doghouse"» | <shed"' | <garage>

<doghouse>:;=<facade l> / (1,1),(1,2),(2,2),
(2,3),(3,2),(3,3)

< shed>:;=<facade 1> / (1,!),(!,2),(2,2),
(2,3),(3,2),(3,3)

<garage>:;-:<facade l> / (1,1),(1,2),(2,2),
(2,3),(3,2),(3,3)

facade l~-;:= >roof><front 1 ^ vertical relation l>

<front !>::= ';panel> |
<door><panel"' contained within relation 5^

■73-

<roof>;:=i<t808cele8 triangle
vpanel>::=<rectangle

<door^:;--<rectangle •
<tectangle>;;= R(n,h,v)

<isosceles triangle>;:=TI(n,h,v)

Ihe entries in the matrix may be defined

1.

2.

3.

The contextual restrielions are indicated by the matrix entries (i.j), which in this case
apply to the type I bids constraint matrix. The rows and columns of the matrix are labeled

with the names of the constituents which are restricted by a constraint 0.. The names of the
rows and columns of the constraint matrix and the corresponding number of the rows and columns
are:

roof = 1

panel =. 2
door 3

The actual constraint matrix is shown in Table
as follows:

For entry (i.j), if i j, th'Jtl the constraint involves only one constituent

and is constraining the constituents height relative to its width.
F-or entry (i.j), if i<j, then the constraint involves two constituents and

is constraining some combination of their heights and width.

For entry (i.j), if j j, then the constraint involves the syntactic relation

between two constituents and is constraining their relative position in
one or both directions.

The row and column labels are those constituents which appear on both the left-hand side and

the r.ght-hand s.de of the rules. In addition, constituents which are not explicitly constrained
need not be assigned a row and column of the matrix.

To use the constraint matrix, it is necessary to check the list of constraint entries found
after the rule, in which the left hand member is the first subgoal being used in the top-down
strategy. Thus, one rule generally lists all the constraints for an identification. Each time a

rule is used in the identification algorithm the list of constraint entries is checked to see if

any are pertinent. If any constraints are to be considered, the correct constraint is obtained

trom the matrix and performed. If the constituents do not satisfy the constraint, the predicted

identification is rejected and a new identification is begun in a top-down manner. If the
constraint is satisfied, the present identification continues.

An example using the grammar rules just described and the constraint matrix in Table 2
is indicated in Figure II. This applies a semantic interpretation to the syntactic string in the
form of the label <doghouse>. The complete process would then attempt to apply the remaining

labels to the syntactic string. In Appendix .9.2 is contained a larger grammar for pattern
recognizing two dimensoinal buildings. The constraint matrices are also included.

All possible semantic interpretations are obtained for the figure. Thus, if in using the

top-down technique the figure is identified, the process does not stop until all possible ident.-
f.cat.on are tried. If the figure receives a singular identification, the segment of the syntactic

string of the scene which represents this figure is assigned the label or identification which
has been obtained. If an additional figure is contained in the scene another segment of the
syntactic string representing a second figure is sent to the first level grammar of the semantic
component. Again the procedure for semantically interpreting the figure is followed.

■74-

x
ri

2 ^ W

Q 35

O - -Ji
60 ^ 2
O J: -
Q y. w

5 ri =

z: = *

= ^ c

-5

■7 5-

A

c

I
I

i H s -1

/
u

■"■^ ' O
— Q

> / Li
rn / 1) 0 >»' 1 > 1

/
V 02

*
« /
w / /
urn /
rl / c
ri /

c 0

„ / ü ca
1 i fN / \ ^s u

<N / -o wi H M

/
'

/ S
c o u / c — CO

a / / 2 *-
n m _£

/ / c os o

^ / / ' o *
« / / \ c
— / / a

-' / / B

- / /
5

t/3

M
/ / ,!■« ,-v 0^ ^v ^M

A / / n n f^ r-l o
2 I»

3
0

:/
•a

A

 c

/ n
-

rj r<^

>/i

1)

"S.
E A o CD cd

— i^>
ob
0

V l\ \
\ u

a:

o
c

T3
V

u

c
n -

OS

u \

tNJ

3
00

•76-

When all figures of the scene have been processed by the tint level grammar, the semantic
interpretations of the figures are sent to the second level grammar.

6.4 THE SECOND LEVEL GRAMMAR OF THE SEMANTIC COMPONENT

While the firs, level works in terms of the syntax of the f.gure (i.e.. the context of the
pr.mmves) the second level works in terms of the syntax of the scene (i.e.. the context of
the figures). Once all the f.gures of the scene have been operated upon by the first level

grammar and the resulting semantic interpretations have been sent to the second level grammar
one of the following situations has been obtained by the first level grammar and the correspond'-
ing subsequent steps indicated are taken.

1. Each figure of the scene has received a singular semantic interpretation.
In this case the semantic labels are operated upon by the rules of the
second level to obtain a semantic label for the scene.

2. Each figure of the scene has received at least one semantic label and at
least one figure has received more than one semantic label, that is.
the figure is considered ambiguous. In this case the set of all combin-
ations of labels of the figures is processed by the second level grammar.
The second level grammar, whose rules define the context of the figures
may eliminate some of the semantic interpretations which cause one or

more of the figures to be ambiguous. It is possible that after the process-
ing by the second level grammar the figure will still be ambiguous. In

this case the scene will receive more than one semantic interpretation,
making it ambiguous.

I. At least one figure cf the scene has received at least one semantic inter-

pretation and at least one figure has received no semantic interpretation,

that is, the figure is considered anomalous. In this case a deductive

inference procedure will be used to attempt to semantically interpret the
anomalous figures.

The first and second case of above use the same procedure of a bottom-up strategy in
apply.ng the rules of the second level grammar. The third case in addition uses a form of
deductive .nference to semantically interpret the scene. Its procedure is outlined in Chapter 7
under the section on future extensions.

The rules of the second level grammar are of the same form as the first level grammar
that is, o ,

X=Y,W,*Ri,Z,*Rj,.../0

where Y, W, and Z are constituents related by the indicated relations. The 0 is again a con-
textual constraint and has the same definition as that lor the first level grammar The con-

stra.nts are placed in matrices as they were for the first level grammar. An example of such a
matr.x i, shown in T.ble 3, where house-1. garage = 2, and doghouse=3. A sample of the
second level grammar is as follows:

<scene>::=<backyard> | <home>

<home>::-<house><backyard^<horizontal relation^ |
vhouse-- garage-^horizontal relation -1

<house^ <doghouse > <horizontal relation • ' (I,!),(! ,2),

(1,3),(2,2).(3,3)

•77-

0

-3
C

SÄ

ft

-

r-.
^ -■ f*",

'f —
f>i r.,. n -"*
A r\ '

/■

— ri <-'
r^.

JK — 3M —
"*" 3= — 7^
S >* ^ >-

00

-—
H
O

r i CQ
.*»

Jg SB* c
/s

|| OS
r | *

r I n
r i

^_
^ ^ >
£ X CO

P p
o

^ C2 CO

MM , i pm
Mb gj c

/^
^. ^ OS »*< -x- *
IE r | n
f*"! -- ^H

s s "P

51)

-J)

■78-

■,backyard ^.:=<garage"' ■-.doghouse"- «horizontal relation '/(Z,2),(2,3),
(3,3)

In the second case, where there is the possibility of the scene receiving more than one
label, those combinations of labels of the figures which are not well-formed according to the
rules of the second level grammar are rejected. The procedure in using the grammar and the
constraint matrices is the same as that described for the first level grammar.

The third case requires some form of deductive inference to supply enough information
to use the rules of the second level grammar. The procedure described in Section 7.1 is
actually developed for the more complex situation in which more than two figures make up a
scene.

If the figure cannot be identified by either the first or second level of the semantic com-

ponent grammar then the figure may either be truly anomalous or the grammar is not satisfactory

for the graphic data being considered. An unsatisfactory grammar may be due to the fact that

the grammar is incomplete and hence just not extensive enough or the particular grammar being
used may be a poor choice for the particular graphic data. A grammar which is thought not to
be sufficiently extensive can most likely be corrected without an unreasonable amount of
difficulty. If the grammar is considered a poor choice either a new set of primitives and/or
syntactic relations is needed to parse the data or a new set of grammar rules using the same
primitives »ad syntactic relations is required.

-74-

7. FINAL CONSIDERATIONS

7.1 FURTHER EXTENSIONS

The following list provides some of the many extensions which can be considered for

SAP and for syntax-directed models in general.

1. The ability for the model to learn is a natural development in using a

grammar. A higher level of learning would allow the model to have some

self-organizing or inductive inference capabilities43-44 in order to extend

its grammar as it sees fit, modifying or redefining rules of the grammar

when necessary.

2. The use of deductive inference mentioned in section 6.4 is not as ambi-

tious as the preceding extension and thus deserves some outlining. The

I use of deductive inference can be applied to the situation in which at

least one figure of a scene has received at least one semantic inter-

pretation and at least one figure has received no semantic interpretation.

I As mentioned in section 6.4, the procedure is actually of significant

value only if more than two figures comprise a scene. The inference is

made assuming an identification of one of the unlabeled figures. Using

I this assumption, identifications are obtained for various other figures

and these identifications are checked for contradictions. If a contra-

diction (reductio ad absurdum) does arise, the original assumption is

known to be wrong and hence thai particular meaning is eliminated as a

possible identification of the figure to which it was assigned. Using

an inference making procedure necessitates detailed bookkeeping so that

a distinction can be maintained as to those figures which have been

rigorously identified and those figures which have been identified on

the basis of the assumed identification of another figure. If an assumed

identification is found to be incorrect due to the constraints, any identifi-

cations based on the incorrect assumption must be removed by a back"

(tracking procedure.

The above use of deductive inference can be applied to actually perform

either of two types of identification. They are:

(i) K-nowing that a particular identified figure is in the scene, an
unidentified figure is completely identified.

(ii) Knowing two partially identified figures in a scene, each is
identified from information of the other.

In the .second type of deductive identification situation, the partial

identification would come from the first level grammar of the semantic

component. The difficulty is in extrapolating these partial identifications

to deductive inferences by the second level grammar. This is an inter-

esting problem which has yet to be considered in the literature.

3. The possibility of merging the generation and pattern recognition modes

into one totally integrated system provides for further learning capabilities

plus a high degree of man'machine interaction.

4. The use of a two-dimensional grammar in man/machine interaction would

■so-

allow the user to define grammar rules without needing an extensive

knowledge of the system. A recent Ph.D. Thesis by T.A. Standish45

has indicated an approach to this problem.

5. The use of syntactic analysis to allow dynamic pictures to be generated

has unlimited applications,

6. Without a doubt, the most sophisticated extension is the ability to operate

with figures which contain informulion concerning depth. The quantum

jump from two to three dimensic n: would produce problems manyfold,

but if pattern recognition is to be of any truly significant value, these

problems must be tackled and solved.

7.2 ADVANTAGES OF THE SYNTAX-DIRECTED MODEL

The

briefly by

1.

3.

4.

5.

8.

9.

advantages of the general syntax-directed model for pattern analysis can be described

the following points;

What appears to be the strongest point of syntax-directed analysis is its

ability to analyze an arbitrarily complex pattern. The ease with which

recursiveness can be placed within the grammar allows an infinite number

of variations in the input patterns to be identified.

The ability to analyze arbitrarily complex figures indicates a high degree

of abstractness may be represented by the grammar, allowing a wide range

of classes to be defined by the giammar.

The use of the grammar allows detailed distinctions to be made as fine

as desired.

The use of a grammar which decomposes a pattern into its simpler con-

catenated parts provides not only the name of the pattern but a structural

description which efficiently represents the pattern.

The descriptive power of the grammar provides the ability to determine

topological equivalence among patterns in addition to providing a basis

upon which the semantic analysis can be made.

The consideration of graphics displays which have dynamic capabilities

is provided an interesting approach by the syntax-directed analysis of

figures. Because the topological features of the figure are available,

it can be readily translated by translating any single constituent of the

figure.

The use of the topological features to represent a figure is an extremely

efficient manner in which to store pictorial data. Rather than store all of

the digitized points, the name of a higher level constituent, such as

triangle, la stored along with its reference point. This reference point

and the name of the constituent completely determine the set of points

which comprise the constituent.

Also because the topological features are available and hence, the con-

stituents of the figure are related, additions to the figure may be made

by essentially augmenting the structural description of the figure without

altering the already existing structural description.

The use of a grammar allows the syntax-directed analysis to be invariant

under linear displacement and size.

■Sl-

10. The grammar is easily extendable and may be altered with no ramifi-

cations in most eases.

11. The efficacy by which the grammar may be extended provides an oppor-

tunity to add sophisticated learning techniques to the syntax-directed

models.

12. A further advantage of the ease by which the grammar may be changed

allows for a wider range of patterns to be recognized without large

changes in the syntactic and semantic components.

13. A strong factor which has just begun to be utilized is the ability of the

grammar to operate as either a generator or recognizer of patterns. This

allows for a high degree of man machine internct'an without a great deal

of overlapping operators.

14. The ability of the syntax-directed pattern recognizer to operate in a

parallel mode may yet prove to be its strongest point. Using a top-down

strategy various alternatives may be considered simultaneously by using

a grammar. This should prove to be an enormous time saving factor and

also serves as a check for errors in the identification process.

15. Because the syntax-directed analysis processes all the information in

an organized and meaningful way, both local and distant Gestalt qualities

are obtained. Thif is particularly appealing to psychologists and physio-

logists who are r versing the normal research behavior by studying the

techniques used in computer programs to hypothesize about the workings

of the human conceptual and physical processes.

7.3 DISADVANTAGES OF THE SYNTAX-DIRECTED MODEL

The disadvantages of such a model can be described by the following points

1. Not only the strength, but also the weakness of the model lies in the

grammar. The choice of primitives, syntactic relations, and higher

level constituents to be formed essentially distinguishes one grammar

from another. This choice is critical and for syntactic analysis to reach

any degree of sophistication, a formalization for this choice must be

developed.

2. What may prove to be a major weakness of syntactic analysis is the

multiple parsings which are obtainable for a figure. These multiple

parsings, however, do not appear to carry the same degree of ambiguity

that they do in natural language analysis though there is a seemingly

astronomical number of different parsings that can be obtained from a

figure of only reasonable complexity. If, as it appears likely, all of

these parsings would receive the same semantic interpretation, then

rather than process all of them, the grammar needs to be developed to
be able to semantically interpret any one of these parsings. As this

solution is infeasible, the syntactic analysis needs to obtain the parsing

in a normalized manner and the grammar which provides the semantic

interpretation is then designed to expect the parsing in this normalized

form. If the multiple parsings of a figure do receive different semantic

interpretations then it is necessary to obtain all of them. In this case,

to eliminate some of the parsings it is necessary to define higher level

primitives which absorb structural attributes not significant in the pattern
recognition process. (This is done in SAP by defining triangles, etc.

to be higher level primitives upon which the semantic component oper-
ates.)

3. The problem of multiple parsings can be considered to create a semantic
analysis problem. A second semantic analysis problem is the use of the
structural descriptions by the semantic component grammar. The
process is considered slow and not efficient because of the number of
false starts by either the lop-down or bottom-up techniques. Parallel
processing should be a solution to this. An alternative to the use of a
grammar for the semantic analysis is the use of discrimination nets
(decision trees). EPAM4*'47 and other models of this type48,49 have
shown the discrimination net to be an effective decision maker and

ai'^ptable to various learning and self-organizing algorithms. While a

net does not represent recursion as well as a grammar, it has not been

found that the semantic component needs a highly recursive mechanism.

4. It is possible that a grammar will not be able to resolve ambiguities as
some ad hoc pattern recognition techniques. One difficulty which has

been resolved but continues to jause some anxiety is ihe measuring of
distances between edges. The following two examples should indicate
the problem. (i) In the drawing below, the distance of a horizontal
relation between primitive Rl and the constituent formed from primitives

R2 and R3 is shown. A user might be tempted to consider the distance
to be that between Rl and the left edge of R2.

(ii) A possible difficulty in syntactic representation may also be seen
by the example

R(l,4,8), R(2,8,4), *R4(TOP), R(3,8,4), *R1(LE4LT)

gives

R2

R3

I
I

-8'-

I

while
R(l,4.8), (1(2,8,4), *R4(T0P), R(3.8,4), *R1{LE3LT)

5. Because most complex graphical data has contextual constraints, the

responsibility on formulating these constraints to avoid mislabeling
ambiguous or anomalous figures lies on the person creating the grammar.

6. The choice as to the primitives of the grammar is made difficult by
fact that the primitives are essentially contained implicitly in the

graphic data.
7. The division between hardware and software is a point of detentior in

syntactic analysis. Syntactic analysis is essentially a software tool
while several aspects of the analysis may be performed better by a

hardware component. An example is the syntactic description of a

circle, which should perhaps be incorporated in the hardware.

7.4 COMPARISON SUMMARY

The above list of advantages and disadvantages of the syntax-directed model for pattern
recognition should not be considered independent of the alternative methods for pattern recog-
nition. Using Minskys50 classification of pattern recognition models as templet matching,
property list matching, and articulate descriptions (syntactic analysis), the advantages and
disadvantages may be summarized as follows:

I. Numbers 1,2,4,5,6,8.11,13,15 of th- list of advantages of the syntax-

directed model are advantages over the templet and property list matching

techniques.
II. Numbers 3,7,9,10.12 of the list of advantages are advantages over only

the templet matching technique.
III. Numbers 1,2,5,6 of the list of disadvantages are true disadvantages

compared to the templet and property matching techniques.

.84-

8- SUMMARY AND CONCLUSION

The model SAP presented in this report is ;i study in the methodology of the syntax-

directed pattern recognition and generation of pictures. SAP performs a many-to-one mapping

bj accepting pictorial data as input and providing as output a label for the data. The pictorial

data considered are two-dimensional pictures which contain no depth information.

In order to operate as either a recognizer or generator of pictures. SAP is composed of

two components, a syntactic component and a semantic component. In terms of pattern recog-

nition, the syntactic component accepts a picture L, and translates it to a set of strings of

symbols L*| which describes the picture's structure. Thus, the function of the syntactic

component is translating from a two-dimensional language L to a one-dimensional language I.*.

Ihe syntactic component uses a lexicon, a modified phrase structure grammar, and a set of

transformational rules to perform this translation.

Ihe semantic component accepts structural description L*|, from the set of structural

descriptions L*. of picture L, and attempts to apply a semantic interpretation, designated as

Label,!, to the picture. First a set of abstractions of L, are obtained by various operations

on the string of symbols 1.*^, to obtain a general classification of L,. The string L* , is then

operated upon ^\ a context sensitive modified phrase structure grammar to receive a semantic

interpretation. The recognition process is made in terms of the syntax and context of the

figures which comprise the picture.

SAC also has the facility to allow a high degree of man machine interaction. A formal-

ization of the syntax L* allows a user to by-pass the syntactic component and have the

semantic component attempt to semantically interpret a structural description which he has

created or by-pass the semantic component to generate a picture from a structural description

w Inch he has created.

Aspects of the syntactic component of SAP which appear particularly promising are the

use oi transformation rules to add artificial lines to a picture and the combination of a lexicon

and a set of 3-tuples to explicitly represent the implicit syntactic relations which form the topo-

logical features of a figure. The language L*.though highly restricted, is capable of represent-

ing the structural description of rather complex two-dimensional figures, which in turn allows

the user to readily interact with SAP.

Similarly, significant contributions of the semantic component of SAP are the use ol an

abstracting process to obtain a general classification of the figure and the ability to represent

contextual constraints which exist between various levels of the constituents which comprise

a figure or scene (the entire picture). These tools are deviations from the use of a phrase

structure grammar to obtain the stiuctural description and semantic interpretations of a figure

or scene. This deviation is the type of direction that must be taken in order to be able to

syntactically analyze a complex two-dimensional picture.

In conclusion, the ability of the syntax-directed model to be able to recognize or generate

an arbitrarily complex figure, determine the topological equivalence among patterns, readily

apply to dynamic displays, provide an efficient approach to storing a pictorial data base, and

operate in a parallel mode indicates that such a model is a highly desirable method of operation

for dealing with at least some types of pictorial data. Because the syntax-directed model does

require a degree of formalization of the structure of the expected pictorial data and there is

difficulty in dealing with multiple structural descriptions of a single figure, such a model may

not he necessarily applicable to all cases of pattern recognition and generation. However.

■ 85-

the ability to extend the syntax-directed model to perform inductive and deductive reasoning

and ultimately to process three-dimensional information indicates the high degree of sophis-

tication which the syntax-directed model should be expected to achieve.

I

■ 86-

APPENDIX 9.1

THE IMPLEMENTATION OF SAP

Various aspects of SAP have been implemented on the LINC, the IBM 360 50, and the
IBM 7072. The first implementation, Program I, was on the LINC. a small general purpose
digital computer, to study the type of pictorial data chosen. Tie programming language used
is an assembly language, LAP6.

Basically. Program I is composed of subroutines which aie able to display any of the
geometric primitives for any specified dimensions. The location of the primitives on the screen
is determined by giving a particular value to their reference point. The information is entered
through the keyboard, and thus by entering a group of referenced primitives, any desired scene

may be displayed on the storage scope. The actual notation of the referenced primitives
is displayed on the LINC screen, allowing changes and deletions to be made as it is typed

into the LINC. The photographs in Figures 9.1.1(a). 9.1.2(a), and 9.1.3(a) are examples of the

graphic feedback. The horizon is obtained by referencing a rectangle of zero height. Also,

the circles and ellipses are generated using sine and cosine tables, rather than approximated
by eight directional lines, as described in Chapter 5.

Program II, also on the LINC in LAP6, is a first implementation of L**. Thus, after a
syntactic string, L*,| is typed into the keyboard, the graphic representation of the string is

displayed on the storage scope. Using a single referenced primitive in the string, the reference
points of the other primitives are obtained by the syntactic relations relating the primitives.
This allows the user to see a display of the parsing he has just typed into the LINC. With
only slight extension, this same procedure will provide information in the form of graphic
displays of the various abstractions performed on the string by the semantic component.

The various options of the graphic syntactic language indicated in Chapter 4 are not

allowed at the present time. While more efficient compiling routines could be written to code
the input string, this topic is incidental to the development of SAP and has been ignored.

In Figures 9.1,Kb/, 9.1.2(b), and 9.1.3(b) are examples of the input strings required to produce
the scenes shown in Figures 9.1.1(a),9.1.2(a), and 9.1.3(a). It should be noted that the present

implementation cannot yet fully generate these graphic scenes from their respective syntactic

string. The graphic scenes were produced by the referencing technique of Program I.

A program on the IBM 360/50 hps been written in LISP 1.5 to perform various manipu-

lations on the triplet set and transform the triplet set into a Reverse Polish string. The

algorithm which obtains the Reverse Polish string from the triplet set bypasses an explicit
formation of the syntax tree.

In Figure 9.1.4 is a flow diagram of the program which obtains the Reverse Polish string
from the triplet set. Section 9.1.1 contains a listing of the program.

The entire abstraction subcomponent has been programmed in FORTRAN on Ihc IBM 707,:.
As indicated in Chapter 6. the program accepts as input a string which provides n siruclural

description of a scene. The abstraction subcomponent segments the string mli individual

figures and abstracts each figure, placing the figure into one of the seven |lttflfll classes

listed on page 92. These classes are described in greater detail in Chapter G in Hie discussion
of the abstracting component.

I
I
i
I
I

■87-

'Ibe Graphic Feedback of a Church Scene
Figure 9.1.1(a)

TR(1.10,15). R(l,10,15), *R1(LE), R(2.2,l),
R(3.l,5), *R4, R(4,2,l), *R4, Tl(l,30,20).
TI(2.7,10), *R5(BOT),*Rl, R{5,4,12), R(6,4.12),
*R4, R(7,7,15), *R1(13), R(8,30,40), *R5(B0T),
*R1, »R4(BOT). TL(I,10,15), R(9,10,15), *R1(LE),
*R4(B0T), FJ1,17,5), *R3(TOP12UP), H(2,20.5),
*R4(10,TOPIDN), E(T,7,30), R(10,2,4), *R1,
*R4(2.BOT), E(4,7,30), R(ll,2,4), *R1, *R4(B0T),
R(0,777,0,0,-350), *R1(RE8LT)

The Syntactic String to Generate the Church Scene
Figure 9.1.1(b)

• 88-

The Graphic Feedback of a I arm Scene
Figure 9.1.2(a)

Ed,10,30), R(l,3,6), *I<1, K<:,6.6),
11(1,27,14), *R5(M()T). R(3,20,15), «(4,20,15),
R4. R(S,27,20), ♦R5(BOT),«l, *R3(4,BOT),
In:.10.10). R(6,10.32), *R1. *R3(9,BOT),
R(0,777,0,0,-100), *R1(RH8LT), E(2,30,7),
*R1(10.RF)

The Syntactic String to Generate the l;arm Scene
Figure 9.1.2(b)

■89-

The Graphic Feedback of a House Scene
Figure 9.1.3(a)

€(1,32,32), R(l,3,l()), *R1, 11(1,25,6),
R(2,3,5), U(3,4,12), *R4(l,BOT3UP),
R(4,3,5), *R3(l,BOT3DN), (5,23,20),
*R5(BOT), *R1, *R3(15,BOT),
Ed,20,7), *RI(7,RT1()LT),
R(0,777,0,0,-200), *R1(RT2LT)

The Syntactic String to Generate the House Scene
Figure 9.1.3(b)

•90-

(

liplel Set

y\

Yes

Is there a Triplet
WIIILII has I st Operand

the same as the Top
of ARG?

No

t
Is there a Triplet

which has 2IH1 Operand
Yes\ (h^. same as the Top

^
if AUCi''

-^■

I ake First
I riplet

(Xl.X2,*Ri)
from Main

I

Add I n si Operand,
Constituent XI, to

I emporar\ I'lisliDnun
Stack Arg"

Add Second
Operand \2

to "Arg"

t
Add Operator. Relation ♦Ri,

to Push-Down Stack
"RPS" I'orming Reverse

Polish String

Are holh Operands
Present in UPS for a
Operators in UI'S1'

>_

Complete
Reverse Polish

String
Obtained

Figure 9.1.4 A Flow Diagram of the Program which Obtains a Reverse Polish String From the Triplet Set

-91-

I

i

I

Input: Sirucuira
Description (Re\ erse

I'dlisii Siring)

No

1

RP Siring
Coded min

Arms •lABST

1
Is IABST a

Single
Constituent

Yes

No

Using Boiionrlp
Kight-io-l.di Slrategv

Ahstraclions are made
U\ resting for;

Constunonl. Constituent,
S\ ntactie Relation

I
Docs Relation

indicate Noncontiguity
Between Constitueuls'.'

Does Relation
Indicate Contained Within

Relationship9

Yes

No

Abstraction ol
Structural

Desci ipnon
Complete

Yes

1
Arc

Constituents
I,ubcled"

Abstract Constituents
Into Higher Level

(onstilucnl

I
Label

Conslilucnl s

I'iBure 9.1.5 A Flow Diagram of the Program Which Segmeuls and Ahsliacls a I'igurc

-l)2-

1. STORE 5. BULBOUS

2. HOUSE h. OFFICE BLDG
3. SILO 7. UNICORN

4. TREE
The structural descriptions can be of any complexity, having both directional recursion

or contained within recursion. Figure 9,1,5 contains a flow diagram of the abstracting program.

Section ^.1.2 is a listing of the program.

9.1,1 A Listing of the Program ^hich Obtains a Reverse Polish String from the Triplet Set

DEFINE ((
(REPOL(LAMBI)A(MAIN)

(PROQCRPS STATE ARG X RFAM)

(SETQ X (CAR MAIN»
U (COND(NULL ARC!) (SETQ ARCi(CONS(CAR X) NIL)))

(T(SFTQ ARG (CONS (GAR X) (GDR)ARG)))))
V (SETQ ARG (CONS (CADR X) ARG))

(CONDUNULL RPS) (SETQ RPS (CONS(CADDR X)NIL)))
(T(SETQ RPS (CONS(CADDR X) RPS))))

(CONDUNULL STATE) (SETQ STATE(CONS 1 NIL)))
(T(SETQ STATE (CONS 1 STATE))))

(SETQ MAIN(EFFACE X MAIN))
A (COND((NULL MAIN) (GO E)) (T (SETQ REAM MAIN)))
B (SETQ X (CAR REAM))

(COND((EQ(CAR ARGHCAR X» (00 V))
((EQ(CAR ARC.) (CADR X)) (GO U))(T(SETQ REAM(CDR REAM))))

(COND((NULL REAM) (GO E))(T(CiO B)))
F (SETQ RPS (CONS(CAR ARG) RPS))

(SETQ ARG (CDR ARG))
F (SETQ STATE (C0NS(ADD1(CAR STATE))(CDR STATE)))

(CONDMEQUAL (CAR STATE)3)(SETQ STATE(CDR STATE)))

(T(00 A)))
(COND((NOT(NULL STATE))(GO F))(T(PRINT RPS))))))
(EEFACE(LAMBDA(XX LL)

(COND((NlJLL LL) NIL)((EQUAL XX (CAR LD)
(CDR LD) (T(RPLACD (LL(FFFACE XX (CDR LL))))))))))

9.1.2 A Listing of the Program Which Segments and Abstracts a Figure

DIMENSION INPUT (40()),NDATA (50,4)
DIMENSION MINAB(1Ü),ISS(1,3),IABST(2()(),3),MAXAB(10)

DIMENSION IAB(3)
DIMENSION IIIOLD(3,3), IIITE (16)

C COMPILE THE STRUCTURAL DESCRIPTION STRING TO
C CODED TABULAR FORM

.93-

I

I

I

I

DO 8000 UKl. 1,10
DO 41 .1 1,3
DO 41 1 1.200

41 lABSTUJ) 0
READ (1,9049) ITITE

9049 FORMAT (16A5)
WRITE (2,9049) ITITE

RKAD (1,9000) N

9000 FORMAT (II)
NN N*S0
RHAD(1,9001) (INPUTd), 1= 1,NN)

^001 FORMATCSOAl)

WR1TE(2.9050)
4050 FORMA 1(25110 STRUCTURAL DESCRIPTION)

WRITE(2,9002) (INPUTd), 1 I.NN)

9002 FORMAT(1H 11SA1)
DO 5 1 l.NN

5 INPUTd) XABSFdNPUTU))

(

C

(
(

STRING WILL BK PUT IN ARRAY NDATA WITH

CONSTITUENTS CODED
TESTING LOR THE TYPE CONSTITUENT WHERE ALPHANUMERIC
EQUIVALENTS ARE 79 R, 83 T, 63 C, 65 ~ E. 26 *

QK.*«*»**»*****«**

.1 0

K 0
9 .1 .1 t 1

10 IFCINPUTU)-7900000000) 20,100.20
20 1F(IHPUT(J)-8300000000) 30,200.30
30 1F(INPUT(J)-6300000000) 40,300,40

40 IFdNPUTU)-6500000000) 50,400,50
50 1F(1NPUT(.I) - 2600000000) 8000,500,8000

^'+ + * + **** + *** ♦He**

RECTANGLE CODED AS 9
C********* +*+♦+**♦»*****************+*******+*****+**♦*******

100 K K ♦ 1
L 1
NDATA(K,L) 9

(;+****+**♦**+*+*+****♦****************+**♦***+********♦****+*

(TESTING FOR DELIMITERS WHERE,
C 36 (. 16), 35 ,, 90 0. 91 1,...
(■■ + »♦** + **♦** i + ****+***+********♦*♦+**+****+*****+*********+**

101 .1 .1 t 1
102 IFdNPUTU)- 3600000000) 103,101,103

103 IFdNPUTU)-1600000000) 104,150,104
104 IFdNPUTU)-3500000000) 105.101,105
105 IFdNPUTU)-9000000000) 8000,106,106

•94«

106 1STAT = Ü
(•»**********♦***+***♦**♦****♦****♦♦****+**♦*♦*********♦**♦*♦*

C CODING NUMBERS TO INTEGER EORM
p**♦♦*♦**♦*

107 NUM = (INPUT(J) 100000ÜÜ0)-9Ü

J = J • 1

IFUNPUTU)-9000000000) 1 10,108,108
108 NUM = NUM*10+((INPUT(J) 1000000000)-90)

109 J = J + 1
110 L L ■ 1

NDATA(K,L) = NUM
IFdSTAT) 102.102,510

^'****♦************♦********* + ♦* + * + + + *♦*♦*♦*******************

C TESTING FOR TYPE OF TRIANGLE WHERE.

C 69 I. 79 R. 73 = L, 64 D
r'************** + ******** + *******************************♦****

200 J = J + 1
IF(INPUT)J)-6900000000) 210.260,210

210 IF(INPUT)J)-7900000000) 220,235.220
220 IFdNPUTU)-7300000000) 8000,248,8000

^-+ ******** + ******♦*****♦♦*******************♦****************

C TR CODED AS 11
C TRD CODED AS 12
r' + A*******************************+ *** + * + + + * + *** + ** + * + + + + * ^■* +

23 5 J =J - 1

K K 1

i. 1

IFdNPUTU) -6400000000) 237,236,237

236 NDATA(K.L) 12

GO TO 101

237 NDATA(K.L) 11

'GO TO 102
p** ************** +*.(•*.************************ + *** ************

(11. CODED AS 13

C I I.I) (01)1.1) AS 14
(■******i.****^****** + * + **** + ******-t< + ** *************** *********

248 J .1 • !

K k ■ 1

I. 1

IFdNPI Ml) - 6400000000) 250,249,250

24l) NDATAfK.U 14

GO I O 10!

250 NDAI AfK I.) 13

GO I O 102

1

1
1

i

i

I

I

I

I

.95.

r**!»»!»********»**»********** **************** *****************

C ISOSCELES TRIANGLE CODED AS 10
^*♦♦♦*******♦♦******♦*♦♦*♦♦*************<♦**♦*******♦♦*******

260 K = K f 1

L=l

NDATA(K.L)= 10

00 TO 101
{-■**» + *******♦******♦*******♦*********♦♦** + *** + ***************

C CIRCLE CODED AS 7
(-»***********♦♦****♦♦***********♦♦*♦***♦♦♦♦************♦*****

300 K = K + 1

L- 1
NDATA(K,L) 7

GO TO 101
(-♦*****************♦******♦**♦*****************♦**♦**********

C ELLIPSE CODED AS 8
(-♦*****♦♦*******♦***♦++**♦*******♦*♦*♦*+♦**♦*********♦*******

400 K - K t 1

L-l

NDATA(K,L) =8

GO TO 101
(-*♦**♦♦+*♦♦*+**»*******+*********♦*******♦*************♦*****

C TESTING EOR SYNTACTIC RELATIONS

C RELATIONS ARE CODED AS THEIR REPRESENTATIVE INTEGER
r-***♦*♦♦ + **

1 50 i } > \
IFUNPUTO) - 3500000000) 800,9,800

500 J J + 1
IF(INPUT(J) - 7900000000) 8000,505.8000

505 J J t 1
IFdNPUKJ)-9000000000) 8000,8000,506

506 K K 1 1

L 1
NDATA(K,L) (INPUT(J)/100000000) - 90

J J . 1
IFUNPUTU) - 3600000000) 8000,507,8000

507 .1 J . 1
IF(1NPUTU)~9000000000) 8000,508,508

50« ISTAT 1

GO TO 107
510 ||(INPUT(J)-1600000000) 511,150,511

511 J Jil
GO TO 510

£•♦♦♦♦♦♦*♦♦******************♦*♦********♦*********************

C CALCULATING AREA OF PRIMITIVES AND STORING THE

C TABLE IN ARRAY IABST
(■■jt,*********** ♦♦He***

-96-

800 1=1
MlNAB(l)- 1
MAX = K

DO 808 K= I, MAX

IABST(K,1) = NDATA(K,1)
IABST(K,2) = NDATA(K,2)
lF(NDATA(K,l)-7) 808,803,804

803 RAD = NDATA(K,3)/2
IABST(K,3)-3,14*RAD**2

GO TO 808
804 lF(NDATA{K.l)-9) 803,805,807
805 1ABST(K.3) - NDATA(K,3)*NDATA(K,4)

CiO TO 808
807 IABST(K,3) = NDATA(K,3)*NDATA(K,4)/2

808 CONTINUE
r-******+ ****♦***** + + ******+**********************************

C TABULAR FORM OF STRING
f************************ ************************************

WR1TE(2,9060)
9060 FORMAT(42H0 TABULAR FORM OF STRUCTURAL DESCRIPTION)

WRITE(2,9061)
9061 FORMAT(47H PRIMITIVE TYPE NUMBER A

XREA)
WRITE(2.666)((IABST(NI,NJ),NJ = 1,3),NI=1,K)

666 FORMATdH 3115)
r-**

C THE REMAINDER OF THE PROGRAM ABSTRACTS AND LABELS
C THE FIGURE WHILE EACH FIGURE IS SEGMENTED FROM
C THE ENTIRE SYNTACTIC STRING
^**

MAXABUUK
r-**

C TESTING FOR RELATION INDICATING NONCONTIGUITY
r"!h ***

813 IF(IABST(K,l)-4) 809,809,810
809 IF(IABST(K,2)) 821,821,812
810 IF(lABST(K,l)-6) 811,811,900
812 ITlT-l
692 K=K-1

IF(K-MINAB(I)) 8000,690,690
r-**

C COMBINING TWO INDENTIFIED FIGURES WHERE THE
C IDENTIFIED FIGURES ARE LABELED 20
(_■**

690 IF(IABST(K,l)-20) 814,691,814

691 ITIT ITIT f 1

IF(lTIT-2) 692,692,693 "

i

I

I

I

1

I

!

(

-97-

693 ISS(1,1) = 20

GO TO 694
(•***+*****»***************+********♦********+♦*+*************

C TESTING I OR SSS,SSS,SYNTACTIC RELATION

821 IT=1

815 K = K- 1

818 IF(K-MINAB(I)) 8000,816,816

816 IF(IABSm.l)-6) 817,817,825

817 IF(IABST(K,l)-5) 814,811,811

811 K = K-1

IF(IABST(K,l)-6) 817,817,820

820 IF(1ABST(K,1)-15) 823,900,823

823 K = K-1

IF(IABST(K,1)-15) 819,900,693

819 IF(IABST(K,l)-6) 817,817,900

825 IFUT 1) 900,826,850

826 IT 2

GO TO 815
^ + i|c** + + + + 1;'(!>t:*>H<++j(<!);**>|<****************** ************** *******

C ABSTRACTING TWO CONSTITUENTS TO A NEW CONSTITUENT

C LABELED 15

C ARRAY ISS CONTAINS NEW CONSTITUENT
^'* + *;*! + * + *** ************

850 1SS(1,1)-15

694 !F(IABST(K,3)-IABST(K t^ 1,3) 855,855,857

855 IF(IABST(K + 1,1)-15) 852,851,851

851 ISS(1,2) = IABST(K+1,:)

GO TO 861

852 ISS{1,2) = IABST(K+1,1)

GO TO 861

857 IF(IABST(K,1)-15) 854,853,853

853 !SS(1,2) = IABST(K,2)

GO TO 861

854 ISS(1,2)=IABST(K,1)

861 IF(IABST(K + 2,l)-5) 858,863,863

858 ISS(1,3)=IABST(K,3)+ IABST(K t 1,3)

GO TO 864

863 ISSn,3)=IABST(K+1,3)
^*******************************♦***♦♦********♦********♦+*♦*♦

C ARRAY IHOLD CONTAINS CONSTITUENTS WHICH WERE

C USED IN THE MOST RECENT ABSTRACTION
^'**♦♦************ + ********♦*****♦***♦***********♦*****»*♦*♦*♦

864 IM = 0

KOOK = K f 2

DO 867 1IK = K, KOOK

IM = IM+1

■98-

DO 867 JJ = 1,3
867 IHOLDUM.JJUIABSTUIK.JJ)

C CONSTITUENTS USED IN THE ABSTRACTION ARE ZEROED OUT

C AND REMOVED FROM THE NEW TABLE

1ABST(K,1) = 0
IABST(K+1,1) = 0

DO 856 J = 1,3
856 IABST(K+2>J) = 1SS(1J)

7098 1STAR = M1NAB(I)
1FIN = MAXAB{I)

1 = 1+1
MINAB(I) = IF1N+ I
NOM = IFIN
DO 875 J = 1STAR,1FIN
IFdABSTU.D) 8000,875,859

859 NOM = NOM+l
DO 860 JJ = 1,3

860 IABST(NOM.JJ) = lABST(J,JJ)

875 CONTINUE
c**

C WRITE CUT OF RESULTS OF LAST ABSTRACTION
c**

MM = M1NAB(I)

1ABN0 = I- 1
WRITE(2. 8011) 1ABNO

8011 FORMAT(22H0 ABSTRACTION NUMBER,15)
WRITE(2,880)((IABST(M,N),N=1,3), M = MM, NOM)

880 FORMAT (1H 3115)
MAXAB(I) = NOM

IT = 0
GO TO 813

c***************+**

C FIGURES ARE CLASSIFIED BY THEIR ABSTRACTED STRINGS
C ACCORDING TO THE RELATIVE AREA AND RELATIONS

C BETWEEN THE PRIMITIVES
c*#**

900 IF(IABST(K,l)-20) 899,8000,899

899 IF(IABST(K,1)-15) 927,905,927

927 IF(IABST(K,l)-9) 904,974,904
904 IF(IABST(K,1)-10) 8989,936,8989
905 IF(lHOLD(l,l)-15) 944.945.945

944 IABl = lHOLD(l,l)
GO TO 906

945 IABl = IHOLD(l,2)
906 IF(1H0LD(2,1)-15) 947,948,948 ,

I
I
I

I

I
i

I

I

1

i

i

i

i

-99-

947 IAB2 = IHOLD(2,l)

GO TO 970

948 IAB2-1H0LD(2,2)

970 lF(IABl-9) 901,915,901

901 lF(IABl-7) 902,920,902

902 lF(IABl-8) 903.920.903
903 IFUABl-lO) 8989,925,8989
915 IF(!AB2-9) 8989,916,8989

916 IF(IHOLD(3.1)-5) 976,975,976
,>74 1ABST(K,2)-IABST(K.1)
975 WRITE (2,977)

977 FORMAT(16H FIGUR'i IS STORi
GO TO 999

976 WRITF(2,917)

917 FORMAT{23H FIGURE IS OFFICE BLDG.)
GO TO 999

920 lF(IAB2-9) 8989,921,8989

921 WRITE(2,922)
922 FORMAT(18H FIGURE IS BULBOUS)

GO TO 999
925 IF(IAB2-9) 8989,926,8989
926 IF(IHOLD(3,l)-1) 8989,930,8989

930 IF(3*mOLD(l,3)-IHOLD(2.3)) 940,931,931

931 IF(IHOLD(1.3)-2*IHOLD(2.3)) 933,936,936
933 WRITE (2,935)

935 FORMAT (16H FIGURE IS HOUSE)
GO TO 999

936 WRITE (2,937)

937 FORMAT (15H FIGURE IS TREE.)
GO TO 999

940 WRITE (2,941)

941 FORMAT (12H FIGURE IS SILO TYPE)
GO TO 999

8989 WRITE (2,8990)

8990 FORMAT (18H FIGURE IS UNICORN)
(^ **** + **♦*** + + *♦*********♦************* + **♦****** + *■* + ***** + + *

C A CLASSIFIED FIGURE IS CODED 20

999 IABST(K,!) = 20

K-MAXAB(I)
GO TO 813

8000 CONTINUE

END

r-

100-

APPENDIX 9.2

A LISTING OF THE RULES OF THE SYNTACTIC AND SEMANTIC COMPONENTS

The following pages contain a listing of the rules which are used in SAP. The rules
are presented in the order listed below.

1. The Syntactic Component Clrammar K 1*.

2. The Transformation Rules for Forming Artificial Lines.
3. The Transformation Rules for the Concatenation of Lines.
4. The Lexicon.

5. The Transformation Rules for the Triplet Set.
6. The Grammar K2* for L*.

7. I he First Level of the Semantic Component Grammar K3*.
8. The Constraint Matrices for First Level of K3*.

9. The Second Level of the Semantic Component Grammar K3*.
10. The Constraint Matrices for the Second Level of K3*.

1. Syntactic Component Kl* Grammar:

■ LH(x.x)"' :-vPH(x)--

<LH(y,.x)>;;=<PH(y)-><;LH(z,x)H vLH(y,z)><PH(x) ■
<Lv(x.x)^::=<Pv(x)^

<Lv(y,x)>::=<-Pv(y)><Lv(z,x)^ | <.L v{y,z) >-.Pv (x)>
;L[)R(x,x)>::-<PDR(x)^

<LB||(y,x)>::=<P0||(y)><LBR(z1x)>|<LDR(y.z)><pBR{x)>
<LBL(x.x)>::=<PDL(x)>

^LDL(y,x)>:;-<PDL(yh<LDL{z,x) >j<LDL(y,z)^<PDL(x).
<R(w,h,v^::=<;LH(vi,vi)^<Lv(vi,vk).. <LH(v|(,v|)>

<Lv(v.,vlh/RECTANGLE
<TI(w,h,v)"-::-<LH(vi,vj)><LDR(vi,vk)>

<LDL(vk,vi)>/ ISOSCELES TRIANGLE

<.TR(w,h.v)^::--<LDR(vi,vk)><Lv(v.,vk)^
<^LH(v.,v.)^/ RIGHT TRIANGLE

<TL(w,h,v)^::=<LDL(vk.vj)><LH(vi,vj)N

<Lv(v.,vk)>/LEFT TRIANGLE
<TRD(w,h,v)>;:=<LDL(vi,vk)><LH(vi,vi)>

<Lv(vk,vi)>/ RIGHT TRIANGLE DOWN
<TLD(w,h,v)>;:=<LDR(vk,vi)-.<LH(vi,v.)>

<Lv(vk,vi)^/LEFT TRIANGLE DOWN

<C(w,h)v)>::=<LH(vl,vf)><LeL(v1)vfc)><Lv(V|)vk)>
^LDR(vm,v|)^sLH(vn,vm)-<LDL(vp,vn)-

<Lv(vp,vr)^<LDR(vr,v.)-/CIRCLE
<E(w1h,v)>::=<LM(v|,v1)><L0L(v|)vk)><Lv(V|,vk)>

<LDR<vn,,v|)-<LH(vn,vm)^vLDL(vp,vn).

<Lv(vp,vf)><LDR(vMvt)>/ELLIPSE

•101-

2. Transformation Rules tor Forming Artificial Lines;

LH,Vi,Vi,.Lv(v > {S.'S:^:-'}

v I'm

Mvpv,) .Lp^.v,) ► (l),(2).LH(vltl(v|)

Lv(v..v.), LDR(v..vk) ► (1),(2). LH(vrvm)

Mv^v,) , LDR(vt,vk) ► (1) , (2) , LH(v.,vm)

LH^I^^ ' LDL(vi'vk) ► (1) , (2) , LyCvJ.Vj)
LH<vi-vi) . LDL<vl<'Vi) ► <1)^2) ' LHCV,,,^,)
LH(vi'Vi) • LDRCV^V,) ^ (1) ,(2) .LyCv,,.^,)

LD^V^V,) , Lv(vilvk) ^ (1) ,(2) . LBL^.V,)

LßR^.v,) , LyCvj.v,,) * (1) , (2) , LDR(vi,vrn)

LDR(vi,vi) , Ly^pv,,) ¥■ (I) , (2) , LH(vm,vi)
LDL<vi.vj) - Lv(vi,vk) » (1) , (2) , LH^.V,,)

3. Transformation Rules for the Concatenation of Lines;

L1(v.,vj),L,(v.,vk),Lm(vj,vn) ►L'1(vi,vk),(3)

L1(v.,vi),L)(vi,vk),Lm(vn,vi) ►L'1(v1(vk),(3)

4. The Lexicon;

CIRCLE ; C(n1,n2n3)

Requirements ; XLENGTH(LH(vi,vi))=XLENGTH(Lv(v|,vk))=

XLENGTH(LH(vn,vm))=YLENGTH(Lv(vp,vr))

XLENGTH(LDL(vi,vk))=XLENGTH(LDR(vm,v|))=

XLENGTH(LDL(vp,vn))=XLENGTH(LDR(vr,v.))=

YLENGTH;LDL(vi,vk))=YLENGTH(LDR(vm,V|))=

YLENGTH(LDL(vp,vn))=YLENGTH(LDR(vr,vi))
Assignments ; n, = CCOUNT + 1

n
2 = XLENGTH(LH{v.,vj))+2(XLENGTH(LDL(v.,vk)))

n3 = n2

and,
B0T = LH(vn,vm)
TOP = LH(v.,Vi)

LE = Lv(vp,vr)

RE = Ly(V|,V|,)
reference point =

/Vk - Vr ' V,. Vi - Vn+ V„\

102-

ELL1PSE : E(n,,n2,n3)
Requirements: XLENOTH(LH(v|,v1))={LH(vn,vm))

YLENOTH(Lv(vllvk))=YLENOTH(Lv(vp,vr))

XLENOTH^L0L(v|,vk»=XLENGTH{LDR(vm,V|))=
XLENGTH(LDL(vp,vn))=XLliNOTH(L0R(vr(vl))
YLENGTH(LDL (v1)vk))=YLENGTH(L|j R(vm ,V|))=

YLENGTH(LDU(vp,vn))=YLENGTH(LBR(vf,vl))

Assignments ; n, ECOUNT < 1
n2 XLENGTHaH^pV,))-» 2{XLENGTH(LDU(v|,v1()))
n3 "2
and,
BOT=LH(vn,vJ
TOP L^v^v.)
LE = Lv(vp!vr)
RH - Lv(V|.vk)
reference point = vk _ v, + vr> v, - vn i vn

RECTANGLE: Rd^.nj.iij)
Requirements: XLENGTHiL^v^v.)) = XLENGTH(LH(vk,v|))

YLENGTH(Lv(v|)vk))= YLENGTIl(Lv(vi,V|))

Assignments : n, RCOUNT ' 1
n2 XLHNGTH(LH(vj,v|))
n3 YLENGTH(Lv(V|,vk))
and.

BOT L^Vi.Vj)

TOP. L^v^.v,)

LR Lv(v.,vk)

RE Lv(v(,V|)
reference point Vj

ISOSCELES TRIANGLE : TKn^nj.nj)
Requirements : XLENGTH(LD „(v^v,,)) XLENGTH(LDL(vk,v|))

Assignments: n, -TICOUNTt 1
n2 XLENGTHCLHlVi.v

1»
113 YLENGTHCLBRCV, ,vk))
and,

BOX LM^VI.V,) n 'I

TOP- vk

LE -v,
RE = v.
reference point = v.

I
i RIGHT TRIANGLE

Requirenienls

-103-

1 K (n ,. n 2, n 3)

n, - TRCOUNTf 1
n2 XLENGTHaH^pV,))

113 YLENOTH(Lv(v,,vk))
and.

HOT LH(vl,v|)

TOP vfc

LE v.

reference point = v

I
I

I

RIGHT TRIANGLE DOWN
Requirements
Assignments

"HPT TRIANGLE-

Requirements
Assignments

TRD(n],n2,n3)

</>
n, - TRDCOUNT . I

n2 XLP.NGTH(LH(vi,vj))

n3 YLENGTH(Lv(vk,V|))
and,

ROT vk

TOP = LH(v,,v|)

LE v.

RL ^LyCVfc.V,)
reference point - v

TL(n, ,n2,n3)

«/>
n, -TLCOUNT t 1
n2-= XLENGTHCLHCV^V,))

n3 = YLENGTll(Lv(vl,vk))

and,

BOT [^(vj.Vj)
TOP - vk

LE - Lv(v.,vk)
RE - v.
reference point v.

LEFT TRIANGLE DOWN
Requirements

Assignments

TLD(n),n2,n3)

n,= TLDCOUNT * I
n2- XLENOTH(LH(vt,V|))
nj- YLENGTH(Lv(vk,vi))
and,

BOT = yk

TOP = L^fv.v.) n 1 1
LE - v,

RE = Lv(vk,v.)
reference point = \i

104-

ON TOP OF
Reiiuirement
Assignments

X,Y,*Rl(n1,n2
nM3nn4)

X(BOT)ffl Y(TOP)

11,= 0

n2= LE
if XCOORDCX, p)
then,

'LE

TO RIGHT OF
Requirement
Assignments

XCOORI)(YLE)
then,

n3 = XCOORD(XL E) - XCOORD(YL E)

n4 RT
if XCOORD(XL E) > XCOORD(YLE)

then,
nj - XCOORD(YLE) - XCOORD(XLE)

n4= LT

X,Y,*R3 (n1,n2nn3nn4)
X(LE) Hi Y(RE)

«,= 0

n2= BOT
of YCOORD(XBOT) - YCOORD(YB0T)

then,
nj YCOORD(YB0T) - YCOORD(XB0T)

n4 -DN
if YCOORD(YBOT) , YCOORD(XBOT)

then,

n3= YCOORD(XBOT) - YCOORD(YBOT)

n4= UP

X,Y,*R5(n1,n2
nn3nn4,n5

nn6
nn7)

X(l.)ffl Yd,)

n, =0

nj = LE

n3= XCOORD(XLE) - XCOORD(YLE)
n4.RT

n5 = BOT
n6 = YCOORD(XBOT) - YCOORD(YB0T)

n7 = UP

5. Transformation Rules for Triplet Set:

Transformation Rules for Isolated Primitives
(a./3,*R5),(y,0,0) ►(!),(y,/3,*R5)
(a,/3,*Ri),(y,0,0) KD.Ca.y^RS)

(a,0,0),(^,0,0) >{ß,a,*n5)

(a,/3,*R5),(y,S,*Ri) ►(l))(2).(y,ß1*R5)

CONTAINED WITHIN
Requirement
Assignments

-105-

Transformation Rules for Missing Relations

(a./3,*Ri),(a.>',*Ri) ► (l),(2),{/3.y,*Rj)

(a,ß,*Ri),(y,ß.*Ri) ► (1),(2).(<M .*Rj)

where i -• j.

Transformation Rules for Inconsistent Relations

(a,ß,*Ri))(/3,y.*R5).(a.>',*Ri) ►0.(3)

(j8.a.*Ri),(ß,y,*R5),(y.a,*Ri) »(2),(33

(a,i3,*R5),(a,y,*Ri))(/315,*Ri),(y,S,*R5) ►(l)/,3).(4)

(|3,a,(R5),(j8,y,*R5),(y,a,*R5) »(2).(3)

6. The Grammar K2* for L*:

< name cir •;

■ name e 1 lip ■;
■ name rect ■:

■name iso8>:

<name n in ;

- name rt tridown •:

■ name 1ft tri ■:

- name 1ft tridown ■:
zero •;

• number •;

integer •:

num type ■;

<horizontal dimension ■:
<vertical dimension>;

-primitive argument ■:

<xcoord

■:y coord

refpt

■reference primitive argument-:

<circle>:

•:ellipse>;: =

rectangle

isosceles triangle

right triangle-

• right triangle down

C

E

R

Tl

TR

= TRD

Tl-

TLD

= 0

= Il2i3l4:5!6l7i8|9

- <number - j < zero ■ number ■ -integer ■

- integer -

= <integer ■
= <integer

= <numtype>,«horizontal dimensions

<vertical dimension^

<integer>
■integer •

■ xcootd,>,<ycoord ■
■ zero -.horizontal dimension-,

^vertical dimension>,<refpt^

<name cir> (<primitive argument-)!

•name cir> («reference primitive argument')

<name ellip>(vprimitive argument"-)!

■'name ellip-(-reference primitive argument.;-)

■ name rect •(«primitive arguments

name rect-(-.reference primitive argument>)

name isos •(■ primitive arguinent"0|

• name isos (reference primitive argument^)

name rl tri •(primitive argument^)|

■ name rt In (elerence primitive argument^)

name rl tridown ■' , 'imilivc argument ■)!
name rl tridown •(■ reference primitive argument^)

-' ::-P W'J

106-

■ lel't triangle

left triangle down

■primitive

.name sr ■

<nisr'>

■ vedg ■

hedg •

vinsp-

<vdir>
■■.hdir ■

wrelpos^

<hrelpos>

<argvsr>

<arghsr>

vvertical relation 1>:

<vertical relation 2>;

.horizontal relation J^:

.horizontal relation 4N;

■.vertical relation N;

<horizontal relation^:

«.directional relation>;

<argcwsr>:

<contained within relation 5>:

<contained within relation6">:

< contained within relation»:

'syntactic relation:

<hsym>:

<vsyni--:

<symf>:

<rps;

<mbt-;

<nur •;

<rpf^:

;;= ■.name 1ft tri>(<pnmitive argument)

■.name lit tri('reference primitive argument^)

;;= .name Ift tridown >(';primitive argument)]

-name Ift tridov/n>(':reference primitive argument>)

:: - vrectangle • i '.isosceles triangle •

■right triangle ■ 1 -right triangle down> j

<le ft triangle ■ | <left triangle down"- |

<circle> I <ellipse •

*R

: = <integer>
:= TOP| BOT |HC
; LEiRE|VC
: = ■•-integer:-

;= UP|DN

;= LTlRT

;= <vedg^'.mspN <.vdir-

: = <hedg> vmsp- <,hdir">

: = <mst>,<hfelpos>
: = vmsr~>,<vrelpos>

;= -.name srM(<argvsrN)

= vname sr>2(<argvsrN)

;- '.name sr>3(<arghsr-)

: = '.name sr"-4(varghsr^)

= vertical relation 1> |

<vertical relation 2N

: =-^horizontal relation 1> |

<horizontal relation 2^

: = <vertical relation > |

<horizontal relation^

= <zero^,<vreipos>,<hrelpos> |

<zero>)<hrelpos>,<vrelpo8>
= <name sr>5(<argcwsr>)

= <name sr>6(<argcwsr>)

= <contained within relation 5> |

<contained within relation 6>

= <vertical relation> |

vhorizontal relational

< contained within relation>

♦MSYM

-*VSYM

- <h8ym> ' hdir^- | '.vsym"- <vdir>

♦RP

= <integer>

= <.integer -

= <rp> <mbr> <hdir> < nur> j

<rp • '.mbr> <vdir^ ^nur"-

i

i

i

i

I

I

I

I

<def8f>
<rote •

<rotef>
unary syntactic function >

binary syntactic function^-
< s s s >

-107-

<els^:: = *E1.S
.rds .. *RDS

<elrdfN;: = -els • ^ nuin> i <rds ^ snum»
<defs>::= *DEFS

<deri>:;= *DEF<integer-

= <defi> <•••> <defs~>
=*ROTE

= <rote> <integer>
= <symf> ! <rpf> | <elrdf^ | <rotef >

= <defsf>
- <priniitive s vprimitive"-<.synlactic relation>

ssss - <primitive~><syntactic relation> |

• primitive><sss>^syntactic relation> |
<sss><sss> 'Csyntactic relation^

<sss><unary syntactic function"-1

DEFi <sss-- DEES

<ss>:: = <sss'''

7. The First Level of the Semantic Component Grammar K3*

<figufe>:; = <hou8e type> | <silo type ■ i
<store type"- | <tree type> \

vbulbous type> I <office type"-
• house type">;; = <doghouse"' | <shed> 1 <house> |

<church> i <garage> | <barn^ \
<school> j <barbershop"

<silo type--:; = <silo type> 1 <Iighthouse> |
sbouy"- j <,tower

<tiee type"-;; = <tree^ [-tent • \ <radio> 1 <toweo
vstore type-;; <store"-

■^office type "-;; = <office bldg> | <flag pole •
bulbous type";; - water tower" | -.barber pole - |

<tree"> | vlamppost"- [<sign^

<8hed>;:= <facade 1"-/(1,1),(1,2),(2,2),
(2,3),(3.2),(3,3)

<gatage> ;; = <facade 1>/(1,1),(1,2),(2,2),
(2,3),(3,2),(3,3)

•cdoghouse -:;= <facade 1>/(1.1),(1,2),(2,2),
(2,3),(3,2),(3,3)

house";; = <facadel> | <facade 2> 'd, 1),(1,2),(2,2),

(2,3),(3)2),(3,3)
•.school>::= <facade 1> | <facade 2>/(l,l)>(l,2),(2,2),

(2,3),(3,2),(3,3)
<barbershop"-;; = cfacade l> [-.facade 2>/(l,l),(l)2)1{2,2)>

(2,3),(3,2),(3,3)

■108-

barn::-- <facade l> | ■ facade 3>. (4,4),(4,10),(6,13),
(7,7),(7,8),(8,7),
(8,8),(9,6),(9,9),

(10,9),(10,10),(13,13)
<church>;:= <cross~> ^facade 4><vertical

relation 1 v 1,1),(1,2),

(1,3),(2,1),(2,2),(2,4),
(3,2),(3,3),(4,4),(4,10),
(5,4),(5.6),(6,5),(7,7),

(7,8),(8,7),(8,8),(9,6),
(9,9),(10,9),(10,10),
(11.10),(11,12),(11,12).
(12,10),(13.13)

<silo>::= <t"acade 0> (1,2),(1,3),(3,1),(3,3)

■ lighthouso:: = <l'acade 0- i <roof><facade 5><vertical
relation 1>/(1,1),
(1.2),(1,3).(2.1).
(2.2),(2,3),(3,1),
(3,2),(3,3)

<tower>;: = <facade 0 >] <roof> <facade 5> <veitical

relation 1> (1,1),

(1,2),(1,3),(2,1).
(2,2),(2,3),(3.1),
(3,2),(3,3)

<buoy>;: = <facade 0> ' (1,1),(1,3),(3,1),(3,3)
<tree>;;= <faeade 0> [<facade 6> | <facade 7>/(l,l),(l,2),(2,l),

(2,2),(2,3),(2,4),

(3,2),(4,2),(4,4)
<tent~>;; = <isosceles triangle xisosceles triangle>

<contained within relation 5>
<radio tower>;: = <facade 0>/(l,l),(l,2)

<store>::= <front 3>/(l,l),(2,l),(2,2)
<office bldg>:: = <front5 Xfront 3><vertical relation 1> |

<front 5><offire bldgXvertical

relation 1>/(5,6),(6,5)
<flag pole>::= «cflagxfacade 6><horizontal

relation 3>/(2,3),(2,4),
(3,2),(3,3),(4,2)

<water tower>:;= <facade 6>/(l,2),(2,l),(2,2)

<barber pole>::= <facade 6>/(l,2),(2,l),(2,2)

<lamppost>:: = <facade 6>/(l,2),(2,l),(2,2)

<sign>:: = < facade 6>/(l,2),(2,l),(2,2)
<facade 0>::= <roofxpanelxvertical relation 1>
<facade 1>::= <roof><front Ixvertical relation 1>
<facade 2>.:-= <roof><front 2xvertical relation 1>

<facade 3>::= <loftxroofxcontained within relation 5>
<front 3><vertical relation l>

n

109-

•facade 4

-.facade 5

vi'acade 6"

<facade 7

■:inside I

vinside 2>:;

- inside 3>;;

from 1 ■;;

front 2>:;

■ front 3 ::

front 4 :

<front 5 >;

< steeple •;

-stained glass >;

<roof>;

<panel>.

<cross>;

<right arm>

<upright>;

■.left arm:--:

■ left wing>:

•right wing>:

<window>;

<double door':

<doors>

<left door •

<right door>

^Jlag-'

<bulb l>

<bulb 2>

<base>

<loft>

<ellipse >

•steeple --front 4^-vertical relation 1 -

<panel><base><vettical relation l>

vbulb Ixpanelxvertical relation 1>

= - bulb 2>-paneb- -vertical relation 1 ■

= <window> | <door> I
<window><door><honzontal relation 3>

<inside IXwindowXhorizontal relation 3

= <double door■|
•-window • -double doorXvertical relation 1 ■

= <windowXwindow> <directional relation ■ i

v window^ <in side 3^ .directional relation>

= <p8nel> 1 <doorxpanel><contained within

relation 5>

• <front l^l<inside 1^ <panel><conlained within

relation 5>

= -front 2^1 vinside 2>-panels-.contained within

relation 5 ■

<ftont 3> | <right wingxfront 3>

horizontal relation 3><left wing>

.horizontal relation 3>

; = <inside 3 > <panel - <contained within

relation 5> | <panel •

;= <toof> | <stained glassXroofxcontained within

relation 5>

: = < isosceles triangle-

; = <isosceles triangle"-

. = <rectangle>
;= <right arm"-<upright><horizontal relation 3 •

<left armxhorizontal relation 3>

.-. = <rectangle>

: = <rectangle>

; = <rectangle>
:= <right trianglexrectanglexvertical

relation 1>

. = <left trianglexrectanglexvertical

relation 1>

; = <rectangle>

;= <lefl doorxright doorxhorizontal relation 3>

:; = <rectangle -

;; = <rectangle>

:; = <rectangle>

;: = <rectangle •

:; = <circle>

.. = <ellipse>

:; = <rectangle>

:; = <tectangle>

::= t:(n,h,v)

w -

■110-

<circle^

<rectangle^

«.isosceles trianglo

vright triangle^

vright triangle downs

vleft triangle>

< left triangle down^

vvertical relation 1>

•^horizontal relation 3>

<contained within relation 5N

C(n,h,v)

R(n,h,v)

TI(n,h,v)

TR(n,li,v)

TRD(n,h,v)

TL(n,h,v)

TLD(n,h,v)

♦RKn^nj)

*R3(n,,n2)

*R5(n i.nj.na)

-,.,,, - ^ .,, ,,

I
I
I
I
i
I
i

i

o ,
— o
11
s. o
rs t/l
0

Ml
-.r» TS 8S

i)
td

Q c^ Ö

■111-

v

Q in

n •*,
r | _, rr. — ••g —.

r i x <■**, '/,
sS — -: r i -

rl X —

i o o
- y) [3

— s:

t/5 W

= a o
Q ;/; C

U

r-
O
CO

OS

Q i/5

ft

■

■112-

aa

^ = ^
— C/3 ?

ü 5

= er C2

yj — ^
= -y; rE

^ S ^5
z; ^ cü

t/i X (/l
= ^5 03

QQ

u
c
P.

p pwwvpMmwiiI..MImmmww*'"'P»^"■WW,.IIIInm.Bniiij.p.),nnii.mii.iii||"!n.i'iMW"n«.w>m|.'w^.siiP,""l"iip||i..1."i- *■> -miw^^ri^i ..,i. n .

-113-

I
5

a

-a

« J

1 1 1 G >
o

o
*o — c
5 I

& 5
Qj

5 I
X Z

X U CD
u

rV M

1
(N m

ni ni

X
u

_ ^'
* >

^» n 1-
o

X X (0

(N n o

r » in
Oi -1

X x j X u U BO u 1

" t2
£ » __ ^^
x »

z
u

{N
fN » > in

(N

X X

I X
u U

In fs

^ cx 5
r C K

^ o s
» m x

a n
♦ _^ 1

u X
u 1

1
|

•a
-J

■a

41

■« s

I

•114-

1= -3

-3

x
u

I »

o
CD

I Z

= «^ S - rfl
J

n

(J 113

-o

pnc

I
I
I

•115-

I
i

I
I
I
I
I
I
I 0 5 -V* _

;/3 ^r. — ^

c -Ji 3 ■JE

c« — X —

c =

C - -^
c/5 _; cc

•y. _i 2: r-

- f-

^ _ ^-
X _; x

t^ _; a: ■-

c 71
M a
D. .c

'

■116-

3

-

a: L2

- «

r i r I

r I r i

r r

X vi
VI ---

-

o

a;
-

2C Q£

u
c
a
c 3

«■ 1

"a

^m

■117-

o.
u.

ca
o
00 ~

rö
5
*s
U1

»
ä
o

o
>
o

.
CO « - O

CM

i
Ä
■^

s

a.
U- ^^^^—

m
I m
o i

CN

CN
M

I »
m n

SE

a! iki
Li. u.

fN

X a. U
■^T o >_
j^ H o*
CM o*
i

0!
K

(N
IL

I a!
U.

u.
H
tn _^_

* ro
■<r c
VI H ^-

O
X CO
VI o

in
* et
M

-*J^-P^* H
t- 2 »n
irt o

4

I. -

■118-

^ £ C/5
u, 'J &. c

Oil -I •£ r;

^ 02 — c^

" — r i •—

^ i; s^

3

^ 5

Z a, a,
vo ca _;

-:

I •119"

8. The Second Level of the Semantic Component Graramar K3*

I

city

^country

home

backyard -

<farm>:

<city> 1 <county> j -home > <backyard> i <fatm>
vschool yard■i church yard> !

■ barbers - -forest ■ | <field • | <camp>

shopping center ■

■ barbers :• vshopping center ■ ^horizontal relation

<home •-school ^-horizontal relation ■ ,

- school -church •• horizontal relation ■
home ■ vfarm^.horizontal relation ■

-house ■• backyard^ ^horizontal relation^

-house -garage-<horizontal relation

-house- -.doghouse •-horizontal relation

street- home ■-horizontal relation •

■house^ ' lampposr--^horizontal relation ■ (1,1),

(1,2),(1,3).(1,4),(1,5).

(2,2).(2,4),(3,3),(3,4),

(3,6)

garage •-.doghouse •-horizontal relation

- doghouse^ vshed^--horizontal relation

vtr^e ■-.backyard ■-horizontal relation- (2,2),

(2,3),(2,4),(3,3),

(3,4),(3,6)

;farm ■ sshed"- <horizontal relation^ |

-Jarm--csilo"--horizontal relation^ j

vfarm^-.shed^ <horizontal relation -

<tree> <farm > '.horizontal relation -/(1,2),(1,3)

school yard>::= <schaol^ <flag pole^ <horizontal relation'-

church yard>;:= <churchN <tree><horizontal relation-

<.tree> v church yard>-.horizontal relation>

;= <barbershop • <barber pole • vhorizontal

relation>/(l,2)

;= <tree-> <tree> vhorizontal relational

-.tree ' <forest><horizontal relation ■

:= <water towerxforestxhorizontal relational

<tower> <forest> -.horizontal relation > |

<radio tower^ <f orest> <horizontal

relation"» '(1,2),

(1,3),(1,4),(2,3),

(2,4)

= <tent> ' tentxhorizontal relational

<tent> <campx ^.horizontal relation^

= '^tore"-<sign><horizontal relational

<store> <store> <horizontal relation^ |

-store" <shopping center> horizontal relation> I

<shopping centerxshopping center

<horizontal relation^ (1,2)

<barbers

<forestv

-.field

<camp"-

-shopping center -

■

•120-

t3

X

3E
I

I

r

ffl

s
X

5
I

Z

Z
A

Z

I

J
f-

a

■121-

-3

-

r i

r i

r I

r I

f 1

r I

f I

r i

ja

..c

—

X)

•12:

-r
X

r i

r j

r i

r 1

f 1

£
r I

r I

X

r |

M

r i

3 g
3 S 0

I ■123-

I

I

I

I

I

I

I

i
i

I

I

10. REFERENCES

1. Clark, W.A.,anJ C" E Molnar, 1 Description of the L/NC, Computers in Biomedical Research.

Volume II, R.W Stacy and B Waxraan (Eds.), Academic Press New York, N Y.. 1965,35 64.

2. Wilkes, MA, and W.A.Clark, Programming the L/NC, Computer Research Laboratory,

Washington University, St, Louis, Missouri, June 1965.

3. McCarthy,J.. P.W Abrahams, D ,1 Edwards, T P Hart, and M I Levin, LISP 1.5 Programmer's

Manucil, MIT Press, Cambridge, Massachusetts. 1962.

4. Weissman, C, I.ISP 1.5 Primer, Dickenson Publishing Company, Belmont, California, 1967.

5. ünger, S 1L, Pattern Detection and Recognition, Proceedings of the 1RL, Vol. 47,No. 10,

October 1959, 1737 1752.

6. Chomsky, N., Current Issues in Linguistic Theory The Structure of Language. ,1. Fodor

and J. Katz (Eds,), Prentice Mall. New Jersey, 1964 50 119

7. Mockett, C.F., The Problem of Vniversals in l.an^ua^e. Universals of Language, .1 II

Greenberg (Ld.). MIT Press, Cambridge. Massachusetts, 1963, / 30.

8. Chomsky, N., Aspects of the Theory of Syntax. MIT Press, Cambridge. Massachusetts, 1965.

9. KatzJ. and .1. Fodor. The Structure of a Semantic Theory. Language, Vol. 39. 170 210.

April-June 1963. Reprinted in .1.Fodor and .1 katz (Eds,),The Structure of Language, Prentice

Hall, New Jersey. 1964.

10. Katz.J. and P. Postal, 4M Integrated Theory of Linguistic Descriptions. MIT Press.

Cambridge. Massachusetts, 1964.

Bolinger. D.. The Atomization of Meaning, Language. Vol. 41, No, 4. 555 573, 1965.

Feder. Jerome, The Linguistic Approach to Pattern Analysis A Literature Suney, New

York University. Bronx. New York. Report 400-131), February 1966.

Cirimsdale, R.L.. F.H.Summer. C.J.Tunis, T.Kilburn, 1 System for the Automatic Recog

nition of Patterns. Proceedings of the Institute of Electrical Engineers, Vol. 106, Part B,

No. 26. 210 221, March 1959, Reprinted in, Leonard Uhr (Ed.), Pattern Recognition. John

Wiley and Sons. New York, 1966.

Kirsch, Russell A., Computer Interpretation of English Text and Picture Patterns, IEEE

Transaction on Electronic Computers. Vol. FC 13. No. 4. 363 376. August 1964.

Narasimhan, R., A Linguistic Approach to Pattern Recognition, Digital Computer Laboratory,

University of Illinois, Urbana, Illinois, Report No. 121. July 10, 1962.

Narasimhan, R., Syntactic Descriptions of Pictures and Gestalt Phenomena of Visual

Perception, Digital Computer Laboratory. University of Illinois, Urbana. Illinois, Report

No. 142. July 25. 1963.

Narasimhan, R., J.R.Witsken. and H.Johnson, Bubble Talk The Structure of a Program

(or On Line Conversation with II.LIAC III, Digital Computer Laboratory, University of 111.

Urbane, Illinois. File No. 604, July 2, 1964.

Narasimhan, R., Labeling Schemata and Syntactic Descriptions of Pictures, Information

and Control, Vol. 7, 151 /79r July 1964.

Narasimhan, R., Syntax Directed Interpretation of Classes of Pictures, Communications

of the ACM, Vol. 9, No. 3, 166 173, March 1966.

Freeman, Herbert, On the Encoding of Arbitrary Geometric Configurations, IRF Transactions

on Electronic Computers, Vol. EC-10, No. 2. 260 268, June 1961.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

"

■124-

21. Freeman, Herbert. Techniques for the Digital Computer Analysis of Chain Uncoiled Arbitrary Plane

Curves, Proceedings of the National Electronics Conference. Vol. 17, 421-432, October 1961.

22. Freeman, Herbert. On the Digital Computer Classification of Geometric Line Patterns, Proceedings

of the National Electronics Conference. Vol. 18. 312-324, October 1962.

23. Freeman, Herbert, and !.. Carder, Apictoriai Jigsaw Puzzles: The Computer Solution of a Problem

m Pattern Recognition, IEEE Transactions on Electronic Computers, Vol. EC-13, No. 2, 118 127,

April 1964.

!4, Eden, Murray, 0« the Fomalization of Handwriting, Proceedings of Symposia in Applied Mathematics,
American Mathematical Society, Vol. 12. 83 88, 1961,

25. Eden, M., Handwriting and Pattern Recognition, IRE Transactions on Information Theory, IT-8,
No. 2, /6() /66, 1962.

26. Breeding, Kenneth James. Grammar for a Pattern Description Language, Department of Computer

Science, University of Illinois, Urbana, Illinois. Report No. 177. May 27. 1965.

27. Ledley, Robert S.. Thousand-Gate-Computer Simulation of a Billion-Gate Computer, Computer and

Information Sciences, J.T.Tou and R.H.Wilcox (lids.)' Spartan Books. Washington, D.C. 457-480,

1964.

28. Ledley. Robert S., High-Speed Automatic Analysis of Biomedical Pictures, Science. Vol. 9,

216 223, October 9. 1964.

29. Ledley, Robert S. and .lames B. Wilson. Concept Analysis by Syntax Processing, Proceedings of

the American Document Institute Annual Meetings. Vol. 1. IS. October 1964.

30. Ledley. Robert S. and Frank II. Ruddio. Chromosome Analysis by Computer, Scientific American.
Vol. 214. No.4. 40-46, April 1966.

31. Miller, W.I', and Alan C. Shaw, .1 Picture Calculus, St. lord University, Stanford. California,
SLAC-PUB-358. October 1967.

32. George, .1. E. and W.F.Miller, String Descriptions of Data for Display, Computer Science Depart-

ment. Stanford University. Stanford. California. SLAC-Pl'B-383, January 1968.

33. Shaw, A.C.. The Formal Description and Parsing of Pictures, Technical Report No. CS 94, Computer

Science Department. Stanford University, Stanford. California, April 1968.

34. Martin, William A., Syntax and Display of Mathematical Expressions, Massachusetts Institute of

Technology, Cambridge, Massachusetts, Memorandum MAC-M-257, July 29, 1965.

35. Anderson, Robert II., Syntax-Directed Recognition of Hand Printed Two Dimensional Mathematics,

ACM Symposium on Interactive Systems for Experimental Applied Mathematics, Washington, D.C,

August 26-28, 1967.

36. Anderson, Robert H., Syntax Directed Recognition of Hand*PrintedTwo-Dimensional Mathematics,

Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, January 1968.

37. Clowes, M.B., Perception, Picture Processing, and Computers, Machine Intelligence 1, N.I.. Collins

and Donald Michie, (Eds.), American Elsevier Publishing Company, New York, 1967.

38. Clowes, M.B., A Generative Picture Grammar, Seminar Paper No. 6. Computing Research Section

Commonwealth Scientific and Industrial Research Organization, Australia, April 1967.

39. Uhr, L.,Pattern Recognition, Electronic Information Handling. A.Kent and O.E.Taulbce. (Eds.),

Spartan Books, Washington, D.C., 51-72, 1965. Reprinted in L. Uhr (Ed.), Pattern Recognition, John

Wiley and Sons, New York, 1966.

40. Lipkin. L., W.Watt, and R. Kirsch, The Analysis, Synthesis, and Description of Biological Images,

Annals of the New York Academy of Sciences, Vol. 138. No. 3, 94S 1012, January 1966.

41. Busacher,Robert G., and Thomas L.Saaty. Finite Graphs and Networks, McGraw-Hill Company,
New York, 1965.

■

■125-

42. Vernon, M.D., A Further Study of Visual Perception, Cambridge University Press. Cambridge.

England, 1952.
43. Solomonoff, R., -1 Formal Theory of Inductive Inference. Information and Control, Vol. 7, 1-22,

224-254. 1964.
44. Feldman. J., First Thoughts on Grammatical Inference, Stanford Artificial Intelligence Memo No.

55, Stanford University, Stanford, California, August 1967.
45. Standish, T.A., I Data Definition Facility for Programming Languages, Ph. 1). Thesis, Carnegie

Institute of Technology, Pittsburgh, Pennsylvania, May 1967.
46. Feigenbaum, H.A., The Simulation of Verbal Learning Behavior, Proceedings of W.ICC, Vol. 19,

121 132. 1961, Reprinted in. E.A.Feigenbaum and J Feldman, Computers and Thought, McGraw-Hill

Book Company, New York, 1963.
47. Feigenbaum, E.A., and H.A. Simon, Generalization of an Elementary Perceiving and Memorizing

Machine, Proceeding of IFIP Congress, 1962, North-Holland Publishing Co., Amsterdam, Holland,
1962. Available as RAND Corporation Paper P-2555, RAND Corporation, Santa Monica, California.

March 1962.
48. Wynn, W.H., An Information Processing Model of Certain Aspects of Paired Associate Learning,

Ph. D. Thesis, University of Texas, Austin, Texas, January 1966.

49. Amon, A.H.. Decision Structures for Recognition, Report No. 126. Digital Computer Laboratory,

University of Illinois, Urbana, Illinois, October 1962.

50. Minsky, Marvin L., Steps Toward Artificial Intelligence, Proceedings of the IRE. Vol. 49, No. 1.
8-29, January 1961. Reprinted in Computers and Thought, E.A.Feigenbaum, and J. Feldman (Eds.).

McGraw-Hill, New York, 1963.
51. Feder, Jerome, Linguistic Specification and Analysis of Classes of Patterns, Department

of Electrical Engineering. New York University, N.Y.. R J port 400-147. October. 1966.
52. Hankley, W.J. and J.T. Tou, "Automatic Fingerprint Interpretation and Classification Via

Contextual Analysis and Topological Coding," Pictorial Pattern Recognition, G. Cheng,

D, Pollock, and A. Rosenfeld (Eds,), Thompson Book Company. Washington D. C.

PP.411-4S6, 1968.
53. Inselberg. Armond, Syntax-Directed Pattern Analysis: A Literature Survey, Technical

Memorandum No. 46, Computer Systems Laboratory, Washington University, St. Louis,

Missouri, August , 1968.
54. Kirsch, Russell A,, (Chairman), Discussion Summary on Graphical Languages, Communi-

cations of the ACM, Vol. 9, No. 3, pp. / 75-776, March 1966,
55. Knoke. Peter J. and Richard G. Wiley, "A Linguistic Approach to Mechanical Pattern

Recognition," Digest of the First Annual IEEE Computer Conference, Chicago, Illinois,

{142-144), September 6-8, 1967.
56. Ledley, R.S.. F.H. Ruddle, J.B. Wilson, M. Belson. and J. Albarran, "The Case of the

Touching and Overlapping Chromosomes." Pictorial Pattern Recognition, 0. Cheng.

R. Ledley. D. Pollock, and A. Rosenfeld, (Eds,), Thompson Book Company, Washington.

D.C., (87-97), 1968.

